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Abstract—A solution is given of a one-dimensional problem of the theory of thermal stresses which
simulates the hot shrink fit of a cylindrical clutch on a cylindrical shaft. The distinguished feature
in the statement of the problem is taking into account the originating and developing plastic flow
of the material of the assembly components due to the nonstationarity of the temperature field
and the dependence of the yield material strength on the temperature. It is shown that irreversible
deformation may significantly reduce the level of the final residual stresses providing the desired
tightness.
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INTRODUCTION

Among the pressure couplings, the assembling realized by means of hot shrink fit has become the
most widespread in the technological practice [1]. Most often this assembling is carried out along the
cylindrical surfaces of the assembly components, when the external member is heated before the fit,
whereas the internal member either cools down or remains at the room temperature. In addition, the
simplicity of the assembly method is supplemented by the possibility of transferring the substantial
in absolute value and different in direction loading forces.

To calculate the fit process and its result, some efficient approximate engineering approaches turned
into methods have been developed [2]; also numerical calculations have been carried out to study
the levels and distributions of stresses in the structural components assembled in such manner [3].
In our opinion, the main shortcoming of the existing approaches to simulating of both the fit process
and its result is connected with the insufficiently consistent account for the parameters of the plastic
flow in the assembly materials. The development of the plastic flow with accumulation of the irreversible
deformations and its subsequent slowing down under unloading and cooling down significantly influ-
ences the formation of the field of residual stresses which determines the final tightness.

Let us consider a simple one-dimensional problem concerning fitting of a cylindrical clutch on
a cylindrical shaft. In its setting we will not strictly follow the technical conditions of the technology,
trespassing the limits of the recommended heating temperatures, and will not take into account the
contact slipping friction and other such effects accompanying the process. In this way, on one hand,
we idealize the technological process to the extent that it can be represented in the form of a model
problem; on the other hand, we will not restrict the conditions of the model problem by the recommended
technological conditions of assembling.

Assume that in the neighborhood of the contact surface the material of the assembly components may
deform intensely and, most importantly, irreversibly. Let us connect the origination and development of
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the plastic flow with the increase of contact stresses in the conditions of a nonstationary heat exchange
process under the decreased yield strength of the assembly materials due to initial heating.

The theory of thermal plasticity [4] including the thermal stress theory in the flow conditions allowed
us to obtain some useful answers to a few questions of technological practice [5–7]. There are clear
perspectives for its development in this direction. This publication is intended to substantiate this.

1. STATEMENT OF THE PROBLEM

Let a cylindrical clutch (a long hollow cylinder) having the dimensions R ≤ r ≤ R1 and heated up to
the temperature T∗ be fit on a cylindrical shaft of radius R at the room temperature T0.

If the edge effects are not taken into account then the subsequent problem of heat transfer and
deformation can be considered as one-dimensional. In this case, for the temperature field created by
the contact of the heated clutch and the shaft, we have in the cylindrical coordinate system r, ϕ, and z
the heat-transfer equation in the form

∂T

∂t
= a

(
∂2T

∂r2
+

1
r

∂T

∂r

)
. (1.1)

Here T (r, t) is the current temperature and a is the temperature conductivity coefficient. In order to
simplify the problem, we assume the material of the clutch and the shaft to be the same.

The equation (1.1) should be supplemented by the boundary and initial conditions. As the latter,
we take T (r, 0) = T0 for r ≤ R and T (r, 0) = T∗ for r ≥ R. At r = R1 we have the contact of the heated
body with the environment (air); therefore,

∂T

∂t

∣∣∣∣
r=R1

= χT0, (1.2)

where the constant χ is the coefficient of the heat transfer from the hot clutch to the environment.
On the surface r = R, we formulate the thermal contact conditions as follows:[

∂T

∂r

] ∣∣∣∣
r=R

= 0,
(

ξ

ζ

∂T+

∂r
+ [T ]

) ∣∣∣∣
r=R

= 0. (1.3)

The square brackets here denote the discontinuity of a quantity on the surface r = R so that [T ] =
T+ − T−, where T+ is the temperature of the shaft material for r = R, whereas T− is the temperature of
the clutch, ξ is the heat conduction coefficient, and ζ is the coefficient of the heat transfer from the clutch
to the shaft. Because of the significant nonstationarity of the process, if the temperature difference of the
contacting bodies is large (T∗ � T0) then we keep in the second equality in (1.3) the summand with the
temperature gradient which is usually not taken into account.

Solving the temperature problem (1.1)–(1.3) does not pose significant difficulties. It suffices to
use the popular software packages or create some program on the basis of finite-difference methods.
Hence, the temperature distribution T (r, t) for the assembly components can be considered as available
(calculated) at each time after the moment of connection. Thus, the fit problem turns out to be a problem
of calculating the thermal stresses caused by the nonstationary distribution of the temperature.

We assume that the material of the assembly components is isotropic and elastoplastic. The arising
deformations dij are supposed to be small and combined of the invertible (elastic) eij and noninvertible
(plastic) pij deformations:

dij = 0.5(ui,j + uj,i) = eij + pij. i, j = 1, 2, 3. (1.4)

Here ui are the components of the displacement vector in the rectangular coordinate system used below;
the index after comma denotes differentiation with respect to the corresponding spatial coordinate.
Invertible deformations and temperature define the stresses σij in the deformed material [8]:

σij = (λekk − 3αKθ)δij + 2μeij , θ = T − T0. (1.5)

Here λ, μ, and K are the elastic constants of the material (λ and μ are the Lame parameters, while
K = λ + 2μ/3 is the compression modulus).
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When the stresses in the deformed material reach the loading surface f(σij) = 0, its plastic flow is
initiated. Assuming the conditions of the Mises maximum principle [9], the equation of this surface in
the space of stresses plays the role of a plastic potential, and we have the associated law of plastic flow:

εp
ij =

dpij

dt
= ψ

∂f

∂t
, ψ > 0. (1.6)

As the specific loading surface, we use the Tresca prism (the condition of maximum tangential
stress) [9]:

max |σi − σj| = 2k, (1.7)

where σi are the principal values of the stress tensor and k is the yield strength. We assume that the latter
is expressed as a given function of temperature. Since there is no such generally recognized dependence,
we choose the simplest linear form:

k = k0T
−1
m (Tm − T ). (1.8)

Here k0 is the yield strength of the assembly material at the room temperature and Tm is its melting
temperature.

It is obvious that, for the above problem both suppositions are nonessential: taking for the yield
strength the simplest linear dependence (1.8) on the temperature, as well as the assumption that the
materials of the assembly components are the same. The calculations below can be repeated for the
corresponding generalizations.

2. THERMOELASTIC DEFORMATION

Let us connect the beginning of the fit process with time t = 0. Following (1.4) and (1.5), we obtain
the expressions for the stress components in the cylindrical coordinate system at time after t = 0:

σr = (λ + 2μ)u,r + λr−1u − 3αKθ,

σϕ = λu,r + (λ + 2μ)r−1u − 3αKθ.
(2.1)

Here σr = σrr, σϕ = σϕϕ, and u(r, t) = ur is the only nonzero component of the displacement vector.
For θ = θ∗ this component is constant which holds for the clutch material prior to the start of the fit
process. Inserting (2.1) into the equilibrium equation

σr,r + r−1(σr − σϕ) = 0,

we obtain the differential equation

u,rr + r−1u,r − r−2u = 0. (2.2)

Hence,

u = C1r/2 + C2/r. (2.3)

The constants C1 and C2 are determined by the zero stress conditions on the free boundary of the clutch:
σr(R1, 0) = 0 and σr(r0, 0) = 0. The equality r = r0 determines the equation of the inner cylindrical
surface of the clutch under the room temperature (prior to heating). Following the boundary conditions
on the lateral surfaces of the clutch, we find: C1 = βθ∗ and C2 = 0, where β = 3αK(λ + μ)−1. For the
technologically important size r0, we obtain the value r0 = R(1 + βθ∗). Under such uniform heating
θ = θ∗ = T∗ − T0, no stresses will be in the clutch material.

At time after t = 0 (during the fit process), the equation (2.3), as it follows from (2.1) and (2.2),
becomes inhomogeneous with the right-hand side equal to bθ,r, b = 3αK(λ + 2μ)−1. The solution of
this equation should be written separately for the material of the shaft and the clutch. In the first case,
we have

u(r, t) = br−1

r∫
0

ρθ(ρ, t) dρ + C11(t)r + C21(t)r−1; (2.4)
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and it follows for the clutch material that

u(r, t) = br−1

r∫
R

ρθ(ρ, t) dρ + C12(t)r + C22(t)r−1. (2.5)

We find the unknown functions of time in (2.4) and (2.5), fulfilling the continuity condition for the
displacement u(r, t) on the contact surface r = R, the condition σr(R1, 0) = 0 on the free surface of
the clutch, and the condition u(0, t) = 0 in the center of the shaft. Owing to the last requirement, we
assume that C21(t) ≡ 0. The dependencies for other integration functions are not shown here due to
their cumbersomeness. Given the displacement field (2.4) and (2.5) determined by the temperature field
θ(r, t), the stress in the assembly components can be found by inserting (2.4) and (2.5) into (2.1):
for 0 ≤ r ≤ R,

σr = −2μbr−2

r∫
0

ρθ(ρ, t) dρ + 2(λ + μ)C11,

σϕ = 2μbr−2

r∫
0

ρθ(ρ, t) dρ + 2(λ + μ)C11(t) − 2μbθ(r, t);

(2.6)

for R ≤ r ≤ R1,

σr = −2μbr−2

r∫
R

ρθ(ρ, t) dρ + 2(λ + μ)C12(t) − 2μC22(t)r−2,

σϕ = 2μbr−2

r∫
R

ρθ(ρ, t) dρ + 2(λ + μ)C11(t) + 2μC22(t)r−2 − 2μbθ(r, t).

(2.7)

The above-obtained solution (2.4)–(2.7) is the initial condition for the origination and development
of the subsequent process of a plastic flow. The moment of origination of the flow is connected with the
fulfillment of the plasticity condition (1.7) which is reduced, in the considered case, to the requirement
|σr − σϕ| = 2k. Inserting (2.6) and (2.7) into this equality and taking into account (1.8), we see that
the plastic flow arises in the clutch material at the place of its contact with the shaft (i.e., for r = R)
at a certain time t0 > 0. Beginning from this time, the elastoplastic boundary r = m(t), m(t0) = R
moves along the material of the clutch. Now the equilibrium equations should be integrated separately
in the three domains: in the domain of the thermoelastic deformation of the shaft 0 ≤ r ≤ R, of the
similar deformation of the clutch m(t) ≤ r ≤ R1, and in the domain of the flow of the clutch material
R ≤ r ≤ m(t). Furthermore, m(t) remains unknown and to be determined while solving the problem.
Moreover, the solution obtained under the listed conditions may be also bounded in time because the
plasticity condition may be fulfilled for the shaft material, and then the new elastoplastic boundary will
move from its surface r = R towards the center of the shaft axis. However, the calculations showed
that for realization of this effect it is necessary that R1 − R ≥ R. Because of this technical reason (and
this can be rarely observed in practice), the given case, being of possible mathematical interest, is not
considered below.

Despite the presence of the plastic flow domain R ≤ r ≤ m(t), the formulas (2.4) and (2.6) remain
valid. However, the functions of time arising in the integration with respect to the spatial coordinate need
to be recalculated already on the basis of new conditions with the presence of the travelling boundary
r = m(t). Together with the unknown functions C12(t) and C22(t) for which new boundary conditions
should be specified, the lower limit in the integral changes from R to m(t). Furthermore, m(t) remains
unknown either. Proceeding from (1.5), we can write for the stress components in the flow domain:

σr = (λ + 2μ)(u,r − prr) + λ(r−1u − pϕϕ) − 3αKθ(r, t),

σϕ = λ(u,r − prr) + (λ + 2μ)(r−1u − pϕϕ) − 3αKθ(r, t).
(2.8)
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In order to eliminate from (2.8) the components of irreversible deformations [10], it suffices to use
the flow condition (σr − σϕ = −2k) and the condition of irreversible incompressibility (prr + pϕϕ = 0).
After the subsequent insertion of (2.8) into the equilibrium equation, we obtain the differential equation
for the displacement u(r, t):

u,rr + (r−1u),r − 2(λ + μ)−1(k,r + r−1k) = βθ(r, t). (2.9)

Integrating (2.9), we obtain the solution of the problem in the plastic flow domain, as before, up to
unknown functions of time C13(t) and C23(t) arising as the integration constants (independent of r):

u(r, t) = 4μ(λ + μ)−1r

r∫
R

ρ−1k(ρ, t) dρ + βr−1

r∫
R

ρθ(ρ, t) dρ + C13r + C23r
−1,

σr = 2

r∫
R

ρ−1k(ρ, t) dρ + 2(λ + μ)C13(t), (2.10)

σϕ = σr + 2k(ρ, t).

The irreversible deformations accumulating in the process of the flow are determined now according
to the dependence

prr(r, t) = 0.5βθ(r, t) − βr−2

r∫
R

ρθ(ρ, t) dρ + 0.5(λ + 2μ)μ−1(λ + μ)−1k(r, t) + C23(t)r−2. (2.11)

The unknown functions of time C11(t), C21(t), C12(t), C22(t), C13(t), C23(t), and m(t) should be
again determined from the boundary conditions and the conditions on the elastoplastic boundary. Their
values are not given here either because of their bulkiness.

3.UNLOADING AND COOLING DOWN

In the process of equalizing of the temperatures of the connection elements, the conditions are created
for slowing down the process of plastic flow and unloading. We have some time t = t1 > t0, beginning
from which a new elastoplastic boundary r = h(t) separates from the surface r = R and then moves
through the clutch material. Furthermore, in the domain R ≤ r ≤ h(t), h(t1) = R, the material again
deforms reversibly, but there are already some accumulated irreversible deformations. If, as before, we
calculate the stresses σr and σϕ starting by the Duhamel–Neumann law (1.5) in the form (2.8) then,
unlike (2.9), we cannot eliminate the irreversible deformations prr from the equilibrium equation with
respect to the displacements in the domain R ≤ r ≤ h(t). In the domain this equation has the form

u,rr + (r−1u),r − 2μ(λ + 2μ)−1
(
p(r)

rr + 2p(r)
rr,r

)
= bθ,r(r, t). (3.1)

It should be noted that in (3.1) the irreversible deformations are the functions of just the spatial
variable r and do not depend on time as in (2.11). Indeed, after passage of the elastoplastic boundary
r = h(t) through some material surface r of the clutch, the plastic deformations do not change anymore.
The variables r and t are connected by this in (2.11), whereas the plastic deformations acquire a time-
independent distribution in the domain R ≤ r ≤ h(t). In the domains of thermoelastic deformation

0 ≤ r ≤ R and m(t) ≤ r ≤ R1,

the relations (2.4)–(2.7) remain valid, which solve the problem. However, the unknown functions of time
should be now searched again from the new conditions generated by the movement of the elastopalstic
boundary surface r = h(t). In the flow domain, the dependences (2.10) and (2.11) hold with the only
difference that the lower integration limit should be inserted from R to h(t). In the unloading domain
R ≤ r ≤ h(t), by (3.1), the relations hold:

u(r, t) = br−1

r∫
R

ρθ(ρ, t) dρ + C14(t)r + C24(t)r−1 + 2μr

r∫
R

ρ−1prr(ρ) dρ,
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Fig. 1. Displacements in the assembly material before (1) and after (2) unloading

Fig. 2. Residual stresses σr (a) and σϕ (b)

σr(r, t) = −2μbr−2

r∫
R

ρθ(ρ, t) dρ + 2(λ + μ)C14(t) − 2μr−2C24(t)

+ 4μ(λ + μ)(λ + 2μ)−1

r∫
R

ρ−1prr(ρ) dρ, (3.2)

σϕ(r, t) = 2μbr−2

r∫
R

ρθ(ρ, t) dρ + 2(λ + μ)C14(t) + 2μr−2C24(t)

+ 4μ(λ + μ)(λ + 2μ)−1

r∫
R

ρ−1prr(ρ) dρ − 2μbθ(r, t) + 4μ(λ + μ)(λ + 2μ)−1p(r).

The functions C14(t) and C24(t) as all of the introduced earlier should again be determined together with
m(t) and h(t) from the boundary conditions.

Over time, the surfaces r = h(t) and r = m(t) coincide, and the plastic flow domain ceases to exist.
Denote this time by t2 (h(t2) = m(t2) = R0). The domain of the clutch material that has experienced
irreversible deformations is thus contained within the limits R ≤ r ≤ R0. Now the solution (2.10)
and (2.11) is eliminated from consideration, but the integration function and the constant R0 again has
to be recalculated. Then the reversible (thermoelastic) deformation continues together with equalizing
the temperatures of the assembly elements and the subsequent cooling of the constructions down
to the room temperature. Note that the plastic flow takes place in the assembly material when the
displacements have positive values (Fig. 1).

The conditions of tightness provide the residual stresses (Fig. 2) which turn out to be one and a half
times lower if we take into account the plastic flow. This computational fact should be taken into account
while assigning the technology parameters.
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The main difficulty in algorithmization of the calculations by the above scheme is not only the use of
the temperature distribution over the deformed body in the form of a numerical data array for their further
application in the numerical-analytical procedures, but, also most importantly, tracking the distribution
of the moving elastoplastic boundaries. On the opposite sides of these boundaries, the different systems
of equations are solved; i.e., we have to fulfil the boundary conditions on the boundaries whose location
is itself the solution of the problem. Even in the simplest case under consideration, this turned out to be
far not a simple problem. In our disposal we have a specially developed computer code that allows us to
carry the calculations including the cases of a more complicated geometry.
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