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Abstract. We consider control problems for 2-D Helmholtz equation in a bounded domain with 
partially coated boundary. These problems are associated with acoustic cloaking. Dirichlet boundary 
condition is given on one part of the boundary and the impedance boundary condition is given on 
another part of the boundary. The role of control in control problem under study is played by surface 
impedance. Solvability of control problem is proved and optimality system is derived.  

Introduction. Statement and solvability of the boundary value problem 

In this paper we consider time-harmonic acoustic waves in an infinitely long cylindrical waveguide 
with bounded cross section Ω. It is assumed that domain Ω is subset of R2 and the boundary Γ of the 
domain Ω is Lipshitz and consists of two parts ΓD and ΓI which are disjoint, relatively open subsets on 
Γ. We also assume that boundary conditions of Dirichlet and impedance type are specified on 
uncoated part ΓD and coated part ΓI of the boundary Γ, respectively. Let ν denote the unit outward 
normal vector defined almost everywhere on Γ. It is well known that the two-dimensional direct 
scattering problem in this situation is described by the 2-D Helmholtz equation 

 
∆u+k2u=0 in Ω                                                                                                                          (1) 

 
with mixed boundary conditions 

 
u=0 on ΓD, ∂u/∂ν + ikλu = g on ΓI.                                                                                            (2) 

 
Here λ is a surface impedance on the part ΓI of the boundary Γ, k is a positive wave number, g is a 
function defined on ΓI. Boundary condition on ΓI implies that the normal component of vibrational 
velocity is proportional to acoustic pressure. We shall refer to problem defined by Eq. 1 and Eq. 2 as 
Problem 1. 

The direct scattering problem defined by Eq. 1 and Eq. 2 was formulated and studied in [1] where 
the unique solvability of the solution is proved in the case when λ = const > 0. A number of papers is 
devoted to study of coefficient inverse problems of determining the surface impedance λ (or finding 
surface conductivity) from the far field data (see, e.g., [2, 3] and references therein). In [4, 5] boundary 
control problems for the 3-D Maxwell system considered in a bounded domain under impedance 
boundary condition were formulated and studied using nonlinear optimization techniques. We also 
mention papers [6, 7, 8] devoted to application of optimization methods for solving related problems 
of technical gas dynamics. 

The goal of this paper is analysis of control problems connecting with solving cloaking problems 
for electromagnetic or acoustic fields. Beginning with pioneering paper by J. Pendry et al. [9] the 
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large number of publications was devoted to solving of problems of constructing cloaking shells (see, 
e.g., [10, 11] and references therein). In cited papers cloaking effect is achieved due choice of 
parameters of medium filling cloaking shell by solving respective inverse problems for Maxwell 
equations or Helmholtz equation with variable coefficients. We emphasize that technical realization 
of solutions obtained in these papers is connected with substantial technical difficulties. 

There are several approaches of overcoming these difficulties. The first approach consists of 
approximation of solutions of “exact” cloaking problem by approximate solutions which admit 
simple technical realization. Alternative approach consists of replacing the exact cloaking problem by 
approximate cloaking problem of constructing “approximate” cloaking shell. This approach is based 
on introducing the cost functional under minimization which adequately corresponds to inverse 
problem of constructing approximate cloaking shell. Just this idea is used in this paper. (The same 
goal can be realized by shape optimization of the boundary; we refer the reader to [12] for the related 
results on shape sensitivity analysis for the coupled models.) Moreover, unlike cited papers the 
cloaking effect in the paper is achieved due choice of surface impedance λ entering into the second 
boundary condition in Eq. 2. The details of this approach can be found in [13, 14, 15]. For realization 
of this purpose we formulate and study control problem for model Eq. 1. 

In this section we study briefly solvability and uniqueness of solutions of direct boundary value 
problem. We shall use Sobolev space H1(Ω) consisting of complex or real valued scalar functions 
defined in domain Ω and the trace spaces H1/2(∂Ω) and H1/2(Γ0) where Γ0 is a part of ∂Ω . We also 
shall use subspace X of space H1(Ω) which consists of functions v from H1(Ω) which satisfy first 
boundary condition from Eq. 2.  The norms in spaces H1(Ω), H1/2(Γ0) and H-1/2(Γ0)  are denoted by  
|| ||1,Ω, || ||1/2,Γ0  and || ||-1/2,Γ0. The inner products and norms in L2(Q) are denoted by ( ,  )Q and || ||Q. If  Q 
=  Ω then we set || ||Ω =  || ||,  ( ,  )Ω = ( ,  ). The inner products and norms in L2(Γ0) are denoted by  
( ,  )Γ0 and || ||Γ0. See more details in [16]. 

Now we study briefly solvability and uniqueness of solutions of direct boundary value problem 
defined by Eq. 1 and Eq. 2. To this purpose we multiply Eq. 1 by a function v* where v is element of 
X (we denote complex conjugate of v as v* for any function or functional), then integrate over Ω and 
apply Green’s formula. We obtain 

 
a0(u, v) + ik(λu, v)ΓI = (g, v) ΓI.                                                                                                  (3) 
 

where 
 

a0(u, v) = (grad u, grad v) – k2(u, v) , (u, v) = ∫Ω uv*dx, (g, v) ΓI = ∫ΓI gv*dσ.                              (4) 
 
We call a solution u of problem Eq. 3 a weak solution of Problem 1. 

Using the theory developed in [16] we can prove the following theorem. 
Theorem 1. Let λ be an element of L∞(ΓI) and λ(x) ≥ λ0;  λ0 > 0. Then for any function g from L2(ΓI) 

problem Eq. 3 has a unique solution u which is an element of X. 

Statement and solvability of the control problem 

The control problem under study consists of minimization of certain cost functional depending on the 
state u and an unknown function (control) satisfying the state Eq. 1 and Eq. 2. As the cost functional 
we choose one of the following: 

 

I1(u) = ∫Q |u – ud|
2dx, I2(u) = ∫Γr |u – ud|

2dσ.                                                                                (5) 
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Here ud an element of L2(Q) (or ud an element of L2(Γr)) which models the acoustic field measured in 
some subdomain Q of domain Ω or on the boundary Γr of the disc Br of the radius r such that Br is 
subdomain of Ω. 

Now we are able to state and study our control problem. We shall assume that control λ is changed 
over certain set K. More precisely, it is assumed that the following conditions are satisfied: 

(j) Γ is an element of C0,1, ΓI is an element of C1,1; α0 > 0; K is subset of Hs
λ0(ΓI) which contains 

functions λ which are satisfy λ(x) ≥ λ0; K is non-empty convex closed set where s > 1/2, λ0 > 0. 
Rewrite the weak formulation of Problem 1 in the form of the operator equation G(u, λ, g) = 0. We 

consider the following constrained minimization problem: 
 
J(u, λ) = (α0/2)I(u) + (α1/2)||λ||2s, ΓI → inf, G(u, λ, g) = 0, (u, λ) is an element of X × K.             (6) 
 
Following theorems can be proved. 
Theorem 2. Let under assumptions (j) I: X → R be a weakly lower semicontinuous functional and 

Zad be a non-empty set. Let further α 1 ≥ 0 and K be bounded set, or α 1 > 0 and functional I be bounded 
from below. Then problem Eq. 6 has at least one solution (u, λ) which belongs to X × K. 

Theorem 3. Let under assumptions (j), α1 > 0 or α 1 ≥ 0 and K be bounded set. Then control problem 
Eq. 6 has at least one solution (u, λ) which is an element of X × K for I = Im, m = 1, 2. 

The optimality system 

The following stage of analysis of control problem Eq. 6 consists of derivation of the optimality 
system which describes the first–order necessary conditions of extremum for our control problem. For 
this purpose we make use of the approach developed in [17]. It is based on the derivation and analysis 
of an optimality system describing the first-order necessary conditions for an extremum in problem  
Eq. 6. However, since problem Eq. 6 is stated for complex valued functions, it has to be preliminarily 
decomplexified. As a result it is reduced to control problem considered in the class of real-valued 
functions. Then based on [17] the optimality system can be derived for the latter “real” control 
problem. Finally this “real” optimality system is transformed to “complex” optimality system 
corresponding to initial problem Eq. 6. On this way the following theorem can be proved. 

Theorem 4. Let under assumptions (j) an element (u1, λ1) from X × K be a solution of problem Eq. 
6 and let I(u) be continuously Frechet differentiable functional with respect to the state u in a point u1. 
Then there exists a unique non-zero Lagrange multiplier p which is an element of X that satisfies the 
Euler-Lagrange equation 

 
a0(v, p) + ik(λ1v, p)ΓI = -(α0/2) (<I’u(u1), v>)* for all v in X,                                                       (7) 
 

and following variational inequality holds  
 

α1(λ1,
 λ – λ1)s, ΓI + kRe[i((λ – λ1)u1, p) ΓI] ≥ 0 for all λ in K.                                                        (8) 

 
The direct problem Eq. 3, identity Eq. 7 which has the sense of an adjoint problem for adjoint state 

and variational inequality Eq. 8 constitute the optimality system for control problems under study. It 
describes necessary conditions of an extremum for control problem Eq. 6. 

The numerical algorithm 

The optimality system plays an important role in investigating properties of solutions to the control 
problem. On the basis of the analysis of optimality systems, sufficient conditions for the initial data, 
which provide the uniqueness and stability of the solutions to individual extremum problems, can be 
formulated. Besides, efficient numerical algorithms can be developed for solving problem Eq. 6. (In 
the case of the 2-D cloaking problem, some of these algorithms were considered in [13]). 

Applied Mechanics and Materials Vols. 635-637 15



 

Optimality system derived above can be used to design effective numerical algorithms for solving 
control problem Eq. 6 under study. Simplest numerical algorithm can be obtained by applying simple 
iteration method for solving the optimality system. The n-th iteration of this algorithm consists of 
finding values un, pn and λn+1 by sequentially solving following problems: 

 
a0(u

n, v) + ik(λnun, v)ΓI = (g, v) ΓI for all v in X,                                                                           (9) 
 

a0(v, pn) + ik(λnv, pn)ΓI = -(α0/2) (<I’u(u
n), v>)* for all v in X,                                                   (10) 

 

α1(λ
n+1, λ - λn+1)s, ΓI + kRe[i((λ - λn+1)un, pn) ΓI] ≥ 0 for all λ in K.                                               (11) 

 

Direct and adjoint problems can be solved by finite element method. Authors plan study numerical 
algorithms for solving control problems and analyze results of numerical experiments in forthcoming 
papers. 
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