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VISCOMETRIC FLOW OF ELASTOPLASTIC MATERIAL

HEATED BY WALL FRICTION
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Abstract: A mathematical model of large deformations is used to solve a coupled boundary-value
problem about the deformation of an elastoviscoplastic material in a cylindrical viscometer with
account for its heating due to wall friction. The deformation of a material enclosed between rigid
surfaces due to the rotation of an inner cylindrical surface at a variable velocity is investigated.
It is taken into account that a yield point depends on temperature. The motion of elastoplastic
boundaries is described. Stresses, strains, and temperature in a thermoelastic deformation region
and in a flow region both during the development of the flow and during its deceleration, including
stopping, unloading, and cooling, are calculated. Residual stresses and deformations are determined.
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Results of viscometric experiments can be used to measure the viscosity of structural materials. These results
are usually processed using the exact solution of the corresponding model boundary-value problem. In the mechan-
ics of viscous and viscoplastic media, such solutions obtained within the Shvedov—Bingham rigid-plastic model are
classical [1–4], and rather universal methods for calculating viscoplastic flows are developed [5–7]. The use of struc-
tural materials or elastic fluids in the cases where the elastic properties of materials cannot be neglected significantly
complicates the problems of viscometric flows. In such cases, deformations in stagnant zones and moving cores are
predominantly reversible and boundary-value problems should be formulated in displacements, while this problem
in flow regions is solved in displacement velocities. Reversible deformation regions and flow regions are separated by
an unknown moving boundary on which the displacement continuity condition should be fulfilled. The calculation
of displacement components in flow regions is a rather complicated task [8], so few solutions to elastoplastic prob-
lems in the theory of flow have been obtained [9, 10]. Note that, in thecase of elastoviscoplastic media, the condition
of equality of the velocities and stress components on the elastoplastic boundary is also insufficient, which can lead
to erroneous solutions [11].

As irreversible deformations are large in flow regions, the problems of viscometric flow should be considered
using the model of large elastoplastic deformations. There are many similar approaches to modeling elastoplastic
properties [12–17]. This work is carried out using a model in which, in accordance with the laws of nonequilibrium
thermodynamics, reversible and irreversible deformations considered as thermodynamic parameters of state are
determined from differential transfer equations [18–21].

With the help of this approach, solutions to some theoretical problems (including exact analytical ones) have
been obtained [21–25].
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Next, we generalize the solution obtained in [25] and in which a viscoplastic flow was considered with account
for slippage on the walls of a fluid meter. Assuming that the presence of sliding friction heats up the deformable
material, we consider the related problem of heat production and irreversible deformations due to viscometric
deformation and wall friction. The problem is solved using a mathematical model of large elastoplastic deformations,
constructed in [18–20], described in detail in [21], and generalized for a nonisothermal case [26] and a case where
the viscous properties of the material during its plastic flow are accounted for [27]. Within the framework of such
a mathematical model, the solutions of coupled thermomechanical problems were previously obtained for the cases
of rectilinear motions of elastoviscoplastic materials [28–31].

1. BASIC RELATIONS OF THE MODEL

The reversible (thermoelastic) component m and irreversible component p of total deformations are deter-
mined by differential equations of their variation (transfer). In Euler variables, such relations have the form

Dp

Dt
=
dp

dt
− x · p+ p · x = γ − p · γ − γ · p,

Dm

Dt
= ε− γ − 1

2
((ε− γ + z) ·m+m · (ε− γ − z)),

(1.1)

where

x = −xt = w + z, ε =
1
2

(∇v +∇tv), w =
1
2

(∇v −∇tv), v =
∂u

∂t
+ v∇u,

m = e+ αT0θI, θ = T−1
0 (T − T0),

z = −zt = A−1(B2(ε ·m−m · ε) +B(ε ·m2 −m2 · ε) +m · ε ·m2 −m2 · ε ·m), (1.2)

A = 8− 8J1 + 3J2
1 − J2 − J3

1/3 + J3/3, B = 2− J1,

J1 = I ·m, J2 = I ·m2, J3 = I ·m3,

u, v are the displacement and velocity vectors; I is the second-rank unit tensor; T and T0 are the current temperature
and the free temperature (room temperature), respectively; α is the linear expansion coefficient; D/Dt is the objec-
tive time derivative. Temperature T (or the entropy distribution density S) and reversible (thermoelastic) m and
irreversible p deformations are taken as the thermodynamic parameters of the state of a body during its deformation.
According to the first equation (1.1), the deformation processes in which the irreversible deformations p remain
unchanged are determined by the vanishing of the source of irreversible deformations γ. In this case, Dp/Dt = 0 and
the irreversible strain tensor components p change in the same way as during rigid the displacement of the body.
The objective derivative introduced in relation (1.1) coincides with the Yaumann derivative in the case of zero
nonlinear addition: z(ε,m) = 0.

For the Almansi total strain tensor d, Eqs. (1.1) and (1.2) yield [21]

d = m+ p−m ·m/2−m · p− p ·m+m · p ·m. (1.3)

The free energy Φ(m,T ) = E(d, S)−TS (E(d, S) is the internal energy distribution density) is used as a ther-
modynamic potential. A hypothesis that significantly simplifies the mathematical model and assumes that the free
energy does not depend on irreversible deformations is taken, and it is believed that the conservative part of the de-
formation process is specified by the elastic potential W (m, θ) = ρ0Φ(m,T ) (ρ0 is the material density in free state).
As the material is assumed to be mechanically incompressible, the Murnaghan formula and the entropy balance
equation are derived from the law of conservation of energy:

σ = −pI +
1

1 + 3αT0θ

∂W

∂m
· (I −m); (1.4)

∂ (ρS)
∂t

= −div J − T−2q · ∇T + T−1σ · γ, (1.5)

Here p is the unknown hydrostatic pressure; q and J are the heat flux and entropy vectors:

J = ρSv − T−1q, S = −T0ρ
−1 ∂W

∂θ
.
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For the considered case of an isotropic medium, the elastic potential W (J1, J2, θ) is expanded into a Taylor
series with respect to the free state of the deformed material at room temperature T0:

W (J1, J2, θ) = −2µJ1 − µJ2 + κJ2
1 + (κ − µ)J1J2 − χJ3

1 + ν1J1θ +

+ ν2θ
2 − ν3J1θ

2 − ν4J
2
1 θ − ν5J2θ − ν6θ

3 + . . . , (1.6)

J1 = I · c, J2 = I · c2, c = m− 0,5m2.

Here µ denotes the shear modulus, κ and χ are the higher-order elastic moduli, and νk (k = 1, 2, . . . , 6) denotes the
thermomechanical constants.

Expression (1.6) is substituted into Eq. (1.5), and the heat equation is written as

(1 + β1θ + β2J1)
∂θ

∂t
+ β3(ε− γ) · c = λ∆θ − 1

2ν2
σ · γ,

β1 =
(1− 3αT0)ν2 − 3ν6

ν2
, β2 = −ν3

ν2
, β3 = −ν1 + ν5

ν2

(1.7)

(λ is the thermal diffusivity). In the case where deformation precedes a viscoplastic flow and where there is unloading
in (1.7), we set γ = 0. Thus, the production of irreversible deformations at these stages of the deformation process in
the form of creep strains is neglected. In the flow region, γ = εp, i.e., the source term in the transfer equation (1.1)
coincides with the plastic strain rate tensor.

The loading surface is specified by Tresca’s yield condition with account for the viscous resistance to plastic
flow [32]:

f(σi, ε
p
k, k) = max |σi − σj | − 2k − 2ηmax |εp

k|, (1.8)

Here σi and εp
k are the main values of the stress tensors and the plastic strain rates, k is the yield strength, and

η is the viscosity.
The dependence between the yield strength and the temperature is written as [28–31]

k = k0(1− θ2/θ2m), θm = (Tm − T0)T−1
0 , (1.9)

where Tm is the melting point of the deformed material and k0 is the material yield strength at room temperature.
The irreversible (plastic) deformation rates are related with stresses by the associated law of plastic flow

εp = γ = ϕ
∂f(σ, γ, k)

∂σ
, ϕ > 0. (1.10)

As Eqs. (1.7)–(1.10) are supplemented by the equilibrium equations ∇σ = 0, a closed system of equations
of quasistationary elastoviscoplastic deformation is obtained.

2. FORMULATION OF THE PROBLEM. INITIAL REVERSIBLE DEFORMATION

Let an elastoviscoplastic material fill an annular gap between rigid cylindrical surfaces r = r0 and r = R

(R > r0). The inner cylinder rotates around its axis with a given variable angular velocity ωr0(t), while the outer
cylinder remains steady.

The trajectories of the medium points are concentric circles, so, according to Eqs. (1.1)–(1.3) and the in-
compressibility condition, the kinematics of the medium in the cylindrical coordinate system (r, ϕ, z) is determined
by the following relations

ur = r(1− cosψ(r, t)), uϕ = r sinψ(r, t), uz = 0,

drr = −1
2
r2

(∂ψ
∂r

)2

= −2g2, drϕ =
1
2
rψ,r = g, ψ,r =

∂ψ

∂r
,

vϕ = rω = rψ,rt, εrϕ =
∂drϕ

∂t
=

1
2

(vϕ,r − r−1vr) =
1
2
rψrt,

(2.1)

wrϕ = −ψ,t −
r

2
ψ,rt, xrϕ = −ψ,t +

2mrϕ(1−mϕϕ)
mrr +mϕϕ − 2

,

where ψ = ψ(r, t) is the value of the central angle of torsion of the medium points and ω(r, t) is their angular
velocity.
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The deformation of the material with increasing, constant, and decreasing rotation velocities of the inner
cylinder are considered. Therefore, the role of the boundary conditions of the problem is played the relations

ψ(R, t) = 0, ω(R, t) = 0,

wr0(t) =


at, 0 6 t 6 t1,

at1, t1 6 t 6 t2,

at1 − b(t− t2), t2 6 t 6 t5, (2.2)

ψr0 =


at2/2, 0 6 t 6 t1,

at1t− at21/2, t1 6 t 6 t2,

at1t− at21/2− b(t2 − t22)
2/2, t2 6 t 6 t5.

It is assumed that, until the beginning of the deformation process t = 0, there are no deformations in
the cylindrical layer, the temperature is equal to room temperature T0, and the initial compression is uniform:
σrr(r, 0) = σϕϕ(r, 0) = σzz(r, 0) = σ0 = const. It is also assumed that initially the material is deformed reversibly
and contacts rigid walls in accordance with the law of dry friction:

|σrϕ| 6 δ |σrr|, u = 0, ω = 0 for r = r0, r = R (2.3)

(δ is the static friction coefficient).
According to Eqs. (1.4) and (1.6), the stress components under elastic deformation are determined by the re-

lations

σrr = σzz = −(p+ 2µ)− 2(κ + µ)g2 = −Σ, σϕϕ = −Σ + 4µg2, σrϕ = 2µg. (2.4)

In system (2.4), reversible deformations are assumed to be so small that their third order can be neglected.
For the results obtained, such an assumption is not essential, but it allows one to significantly simplify the calcula-
tions.

Integrating the equilibrium equations (quasistatic case)

σrr,r + r−1(σrr − σϕϕ) = 0, σrϕ,r + 2r−1σrϕ = 0, (2.5)

and accounting for Eqs. (2.1) and (2.4), we obtain a solution valid in a time interval where only elastic deformation
of the material occurs:

σrϕ =
f(t)
r2

, σrr = σzz =
f2

4µ

( 1
r40

− 1
r4

)
+ σ0,

σϕϕ =
f2

4µ

( 1
r40

− 3
r4

)
+ σ0, ψ =

f

2µ

( 1
R2

− 1
r2

)
, )(2.6)

ω =
ḟ

2µ

( 1
R2

− 1
r2

)
, ḟ =

df

dt
, f(t) =

aµt2

R−2 − r−2
0

.

The resulting solution is valid up to a certain time t = t0 < t1. At a time t = t0, depending on the values
of the material parameters, either the material begins to slip or a viscoplastic flow arises in the vicinity of the inner
surface. For δσ0 < k0, the slippage begins before the onset of a viscoplastic flow, so, starting from the time

t = t0 =

√
δσ0r20
aµ

( 1
r20

− 1
R2

)
the boundary condition (2.3) for r = r0 should be replaced by the condition

|σrϕ| = δ |σrr|+ ξ |ω − ωr0 | (2.7)

(ξ is the viscous friction constant). With fulfillment of Eq. (2.7), the heating of the material begins due to the wall
friction on the surface r = r0:

θ(r, t0) = 0, θ,r(R, t) = 0, θ(r0, t) = α1(ψ(r0, t)− ψr0). (2.8)
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In accordance with the conditions (2.8), the surface r = R is thermally insulated, α1 = const is the heat
production constant due to friction, and the heating of the material due to the thermomechanical coupling of re-
versible deformation and temperature is neglected (the coupling coefficient is assumed to be zero). In this case,
Eqs. (2.4), (2.6), and (1.3) imply the relations

σzz = −(p+ 2µ)− 2(κ + µ)g2 + ξ1θ − ξ2θ
2 ≡ −Σ1,

σrr = −Σ1 + 4lθg2, σϕϕ = −Σ1 + 4µg2, σrϕ = 2(µ− lθ)g,

mrϕ = g, mrr = −3g2/2, mϕϕ = g2/2,

ξ1 = ν1 + 6µαT0, ξ2 = ν3 + 18µα2 + 3αν1T0, l = ν1 + ν5 + 3αµT0.

The heat equation (1.7), the second equation of equilibrium (2.5), and the condition (2.7) yield a system
of equations for determining the relative temperature θ(r, t), the angle of rotation ψ(r, t), and function f(t)

(1 + β1θ)θ̇ +
β3f

2r4(µ− lθ)3
(lf θ̇ + (µ− lθ)ḟ) = λ(θ,rr + r−1θ,r),

ψ,r =
f

r3(µ− lθ)
, ψ,t(r0, t) =

δσ0

ξ
+

f

ξr20
+ ωr0 .

(2.9)

Equations (2.9) are solved numerically using the conditions (2.8) and the condition ψ(R, t) = 0. The calcu-
lations continue until the plastic flow condition (1.8) is fulfilled. This condition is satisfied on the surface r = r0 in
the form σrϕ(r0, t∗) = −k(θ(r0, t∗)) at a time t = t∗ for which the following equation is valid:

f(t∗) = −k0r
2
0(1− θ2(r0, t∗)/θ2m).

3. VISCOPLASTIC FLOW

Starting at t = t∗, an elastoplastic boundary r = r1(t) moves from the inner boundary surface to the outer
surface, and this boundary splits the deformation region into two parts: a reversible (thermoelastic) deformation
region r1(t) 6 r 6 R (region I) and a viscoplastic flow region r0 6 r 6 r1(t) (region II).

In the thermoelastic deformation region, Eqs. (2.9) are valid for the relative temperature θI(r, t), the angle
of rotation ψI(r, t), and function f(t).

Kinematic dependences for the case under consideration have the form

εrϕ =
∂erϕ

∂t
+ γrϕ =

∂erϕ

∂t
+ εp

rϕ =
∂erϕ

∂t
+
∂prϕ

∂t
,

εp
rr =

∂prr

∂t
+ 2prϕ(xrϕ + εp

rϕ)− 2prϕ
∂ψ

∂t
,

εp
ϕϕ =

∂pϕϕ

∂t
+ 2prϕ(xrϕ + εp

rϕ) + 2prϕ
∂ψ

∂t
,

εp
rr = −εp

ϕϕ =
εp

rϕ(err − eϕϕ)
2erϕ

.

In the viscoplastic flow region, the stresses depending on reversible deformations and temperature are determined
from Eqs. (1.4) and (1.6):

σzz = −(p+ 2µ)− 2(µ− (ν4 + 3καT0)θ)m2
rϕ + 2(κ − (ν4 + 3καT0)θ)(mrr +mϕϕ) + ξ1θ − ξ2θ

2 = −Σ2,

σrr = −Σ2 + 2(µ− lθ)mrr + (3µ+ lθ)m2
rϕ, (3.1)

σϕϕ = −Σ2 + 2(µ− lθ)mϕϕ + (3µ+ lθ)m2
rϕ, σrϕ = 2(µ− lθ)mrϕ.
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The following expressions are derived from the associated law of plastic flow (2.9):

σrϕ = −k + ηεp
rϕ, ϕ = εp

rϕ(−k + ηεp
rϕ)−1, εp

rϕ =
1
η

( f
r2

+ k0

(
1− θ2

θ2m

))
. (3.2)

Stress continuity conditions on the moving elastoplastic boundary r = r1(t) are used to obtain an equation for
determining this boundary:

r1(t) =
√
−f(t)/[k0(1− θ2(r1, t)/θ2m)] . (3.3)

The heat equation (1.7) for the viscoplastic flow region takes the form

(1 + β1θ
II)θ̇II +

β3f

2r4(µ− lθII)3
(lf θ̇II + (µ− lθII)ḟ) = λ(θII,rr + r−1θII,r) +

1
2ν2η

f

r2

( f
r2

+ k0

(
1− (θII)2

θ2m

))
. (3.4)

In accordance with Eqs. (2.1) and (3.2), the following equation is obtained for the angular velocity of the medium
points in this region

ω = ψII
,rt =

1
r3(µ− lθI)

(ḟ + flθII,t ) +
1
ηr

( f
r2

+ k0

(
1− (θII)2

θ2m

))
. (3.5)

Equations (2.9), (3.3)–(3.5) are supplemented with the boundary conditions

θI,r(R, t) = 0, θII(r0, t) = α1(ψII(r0, t)− ψr0),

ψI(R, t) = 0, ω(R, t) = 0, θI(r1, t) = θII(r1, t),
(3.6)

which results in a system of equations for determining the relative temperature θI(r, t), θII(r, t), the angle of rotation
ψI(r, t), ψII(r, t), function f(t), and the elastoplastic boundary r = r1(t).

For the numerical implementation of problem (2.9), (3.4)–(3.6), two time-varying grids with respect to
variable r are constructed:

— in the thermoelastic deformation region: r = r1 i+1 + he
i+1j, j = 0, Ne − 1, he

i+1 = (1− r1 i+1)/Ne;
— in the viscoplastic flow region: r = r0 + hp

i+1j, j = 1, Np, hp
i+1 = (r1 i+1 − r0)/Np. At each time

step t = t∗+dt(i+1), i = 0, N , due to the movement of the elastoplastic boundary, the grid changes. The temperature
and angle of rotation for the newly constructed grid at the previous time step are calculated using interpolation.

The resulting values of the relative temperature θI(r, t) and θII(r, t), the angle of rotation ψI(r, t) and ψII(r, t),
and function f(t) are used to determine the distributions of the angular velocity ω, stress σrϕ, thermoelastic strain
components mrϕ, and plastic strain components prϕ. The unknown components of the reversible deformations mrr

and mϕϕ and of the irreversible deformations prr and pϕϕ are calculated from the system of equations

∂pϕϕ

∂t
= −εp

rϕ

pϕϕ −m2
rϕ

mrϕ
+

4εrϕprϕ

2 +m2
rϕ

(
1 +mϕϕ − 1

2
m2

rϕ − 2mrϕprϕ

)
,

mrr = pϕϕ − 3m2
rϕ/2− 2mrϕprϕ, prr + pϕϕ = −2p2

rϕ, mrr +mϕϕ = −m2
rϕ.

Next, the diagonal stress components and the additional hydrostatic pressure are determined from the first equilib-
rium equation (2.5) and expressions (3.1).

4. DEFORMATION AT A CONSTANT AND DECREASING ROTATION VELOCITY

System (2.9), (3.4)–(3.6) is valid at a constant rotation velocity, starting from t = t1. In this system,
ψ(r0, t) = at1t− at21/2 according to Eqs. (2.2). In this case, the viscoplastic flow region continues to increase.

It is assumed that, since t = t2 > t1, the angular velocity of the inner surface decreases: ωr0(t) = at1 −
b(t − t2). In this case, the viscoplastic flow region first increases and then, since t′ > t2, begins decreasing.
From a time t′′, a new elastoplastic boundary r = r2(t) is formed, which moves from the surface r = r1(t′)
to the inner surface r = r0 and separates the decreasing flow region r0 6 r 6 r2(t) from the region r2(t) 6 r 6 r1(t′),
in which irreversible deformations do not accumulate (the irreversible strain tensor does not change with time).
In the region r1(t′) 6 r 6 R, the deformation is reversible.
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Fig. 1. Change in the viscoplastic flow region during deformation: with account for heating (solid
line) and isothermal case (dashed line).

In the reversible deformation regions r1(t′) 6 r 6 R and r2(t) 6 r 6 r1(t′), the heat equation in system (2.9)
is valid with the additional condition that the values of function θ match on the unchanged boundary r = r1(t′).
In the viscoplastic flow region, Eq. (3.4) is still fulfilled. The temperature, the rotation angle, and functions f(t)
and r = r2(t) are determined by constructing a system of equations similar to system (2.9), (3.3)–(3.6).

At a time t = t3, with a continuing decrease in the rotation velocity of the inner rigid surface, slippage stops
and then the adhesion condition is fulfilled. An instant t = t3 is found from the condition f(t3) = −δσ0r

2
0. Starting

from a time t = t3, the material cools down, and the boundary conditions on the surface r = r0 take the form
ψ(r0) = ψ(r0, t3), θ(r0, t) = θ(r0, t3)(1− α2(t− t3)).

For the selected problem parameters, first, for t = t4 = ab−1t1 + t2, the speed of the inner surface becomes
zero, then, for t = t5, the boundary surface r = r2(t) reaches the rigid wall r = r0, and two regions of reversible
deformation remain in the material: r1(t′) 6 r 6 R (thermoelastic) and r0 6 r 6 r1(t′) (area with accumulated
irreversible deformations). This moment of time is found by solving the equation

r20k0(1− θ2(r0, t5)/θ2m) = −f(t5).
From the moment of time t = t5 the process of temperature equalization in the cylindrical layer due to

thermal conductivity is described by the first equation (2.9) and continues after the moment of time
With the selected parameters of the problem, the velocity of the inner surface becomes equal to zero at

t = t4 = ab−1t1 + t2 and then the boundary surface r = r2(t) reaches the rigid wall r = r0 at t = t5, and two
reversible deformation regions remain in the material: r1(t′) 6 r 6 R (thermoelastic) and r0 6 r 6 r1(t′) (region
with accumulated irreversible deformations). This instant is found from the solution of the equation

r20k0(1− θ2(r0, t5)/θ2m) = −f(t5).
Since t = t5, the temperature equalization process in the cylindrical layer due to thermal conductivity is

described by the first equation in system (2.9) and continues after the time t = t6 = t4 + α−1
2 ,, when θ(r0, t6) = 0.

Figure 1 shows the change in the position of the elastoplastic boundary during the entire deformation process,
and in Figs. 2 and 3 illustrate the distributions of the relative temperature θ and the angle of rotation ψ at different
times. The calculations are carried out in dimensionless variables

r̃ =
r

R
, τ = αt, σ̃ij =

σij

µ

with the following parameter values: aη/µ2 = 0.004, r0/R = 0.5, k/µ = 0.006 21, a/b = 1, aξ/µ = 0.005, β1 = 0.5,
β3 = −0.5, δσ0/µ = 0.005, l/µ = 0.001, ν1/µ = 0.02, α1 = 100, α2 = 50, q/R2 = 10.

CONCLUSIONS

This work describes the solution to the problem of the viscometric flow of an elastoviscoplastic material
in the gap between two rigid coaxial cylindrical surfaces, with possible slippage of the material and its heating
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Fig. 2. Temperature distribution at different times.
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Fig. 3. Distribution of the values of the angle of rotation at different times in the case of deformation
with account for heating (a) and in the isothermal case (b).

due to friction against the cylinder walls on one of the surfaces. The change in the viscoplastic flow region differs
significantly from the change in the region in the isothermal case. In the case under consideration, as the rotation
velocity of the inner cylinder increases, the viscoplastic flow region develops faster, the viscoplastic flow region
continues to increase at a constant velocity. In the isothermal case, it increases mildly in the isothermal case and
does not develop further. With a decreasing rotation velocity, the viscoplastic flow region becomes smaller at a much
slower rate than in the isothermal case. Significant differences in the displacement distribution are observed with
a decreasing rotational velocity: they are greater than in the isothermal case.
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