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Abstract—The present study is devoted to the boundary value
problems of the thermoelastoplasticity with temperature depen-
dent yield stress. The one dimensional problem of the residual
stresses formation in the thin elastic-plastic disk under a given
thermal action is analytically solved. The analytical solution is
found for the plastic flow and unloading process in center of
the solid disk under unsteady heat effect. For calculation we
applied the maximum reduced stress (Ishlinsky–Ivlev‘s) yield
condition with temperature dependent yield stress. It is shown
that secondary plastic flow may arise in the unloading processes,
which significantly redistributes the final residual stresses. The
fields of residual displacements and stresses are computed and
graphically analyzed.

Index Terms—elasticity, heat conduction, Ishlinsky–Ivlev‘s
yield condition, maximum reduced stress, plasticity, residual
strain, thermal stress.

I. INTRODUCTORY

AS it’s well known, the high temperature gradients are
able to lead to irreversible deformation and residual

stresses formation in a material [1], [2], [3]. Fast heating
increases the temperature difference that it’s also leads to in-
crease of the shearing stress. The state of material unloading
or shearing stress decreasing is always occurs to the extent
of the temperature equalization. In such cases, unsteady
temperature field forms the time-dependent domains of the
irreversible strains. The plastic strains accumulates in these
domains. The difficulty of a calculation of the irreversible
deformations under an non-stationary thermal field deals with
determination of the elastic-plastic border position. In the
general case, the position of the elastic plastic borders could
depend on the accumulated irreversible deformation level.
The Tresca‘s [4], [5] or (Huber) von Mises‘s [6], [7] yield
conditions are usually used for calculation of plastic flow
processes [1], [2], [3], [9], [8], [10], [11]. However there are
problems in which Tresca‘s yield condition using leads to
the incorrect results. One of these problems is presented in
the paper. We consider the process of a plastic strain forming
due to fast heating of the central part of the elastic-plastic
disk. The peculiarity of this problem is an assumption of
Ishlinsky–Ivlev‘s (maximum reduced stress) yield condition
[5], [14] with temperature dependent yield stress [15] as an
yield surface.

The theory of thermal plasticity [16] including the thermal
stress theory in the flow conditions allowed us to obtain
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some useful answers to a few questions of technological
practice. There are clear perspectives for its development in
this direction. This publication is intended to substantiate
this.

II. GOVERNING EQUATIONS REMINDER

We assume that, till the time t = 0, the disk is in free state
at room temperature T0. We also assume that the isotropic
elastic-plastic material of the disk obeys the PrandtlReiss-
type model [5], [16]. The infinitesimal strains dij are com-
posed of elastic (reversible) eij and plastic (irreversible) pij
residual strains. Thus, in cylindrically symmetric case we can
obtain

drr = ur,r = err + prr,

dϕϕ =
ur
r

= eϕϕ + pϕϕ,

dϕϕ,r +
dϕϕ − drr

r
= 0.

(1)

ur is a radial component of the displacement vector. The
index after comma denotes partial derivative with respect to
the corresponding spatial coordinate.

The level and distribution of elastic strains and the temper-
ature over the plate determine the stresses in the disk which
obey the Duhamel-Neumann law

σrr =
4µ(λ+ µ)err
(λ+ 2µ)

+
2λµeϕϕ
(λ+ 2µ)

− 2α(3λ+ 2µ)T

(λ+ 2µ)
,

σϕϕ =
4µ(λ+ µ)eϕϕ

(λ+ 2µ)
+

2λµerr
(λ+ 2µ)

− 2α(3λ+ 2µ)T

(λ+ 2µ)
,

ezz = αT − λ(err + eϕϕ)

(λ+ 2µ)
,

(2)
where T is the difference between current and initial tem-
perature of the disk; λ, µ are the Lame’s parameters; α is
the coefficient of linear thermal expansion.

The thermal stresses inside the disk should satisfy to
equilibrium equation

σrr,r +
σrr − σϕϕ

r
= 0, (3)

The Ishlinsky–Ivlev‘s yield condition [5] is used as yield
criteria:

max {|σ1 − σ| , |σ2 − σ| , |σ3 − σ|} =
4k(T )

3
. (4)

Herein, σi is the principal components of the Cauchy‘s stress
tensor, σ = (σ1 + σ2 + σ3)/3. We assume that the yield
stress is a linear function on the temperature k(T ) = k0(1−
βT ). The local thermal effect in plane stress states leads to
satisfying of the yield condition (4) in the form of

σrr + σϕϕ = −4k(T ). (5)
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The plastic incompressibility condition follows from the
plastic flow rule associated with equation (5) and suggests

prr + pϕϕ + pzz = 0, prr = pϕϕ. (6)

In case, when the yield condition (4) doesn’t valid (for
example in an unloading state), it is conveniently to deter-
mine the stress-strain state from equations (2-3) as following
differential equation:

γ (Pr,r + αT,r) + 2σrr,r + (rσrr,r),r = 0, (7)

where Pr(r) is the accumulated irreversible strain prr(r, t)
at the plastic flow state, γ = µ(3λ + 2µ)/(λ + µ). If we
integrate equation (7), one can derive:

σrr = −
γ

r2

(
r∫
l

ρPr(ρ) dρ+ α
r∫
l

ρT (ρ, t) dρ

)
+

+A(t) +
B(t)

r2
,

σϕϕ = A(t)− B(t)

r2
− γPr(r)− αγT (r, t)+

+
γ

r2

(
r∫
l

ρPr(ρ) dρ+ α
r∫
l

ρT (ρ, t) dρ

)
,

(8)

Herein, l is the coordinate in the domain, where equation (7)
are true; A(t), B(t) are unknown functions.

Therefore, for the radial displacement from equations (8)
one can computed

ur =
γ

2µr

(
r∫
l

ρPr(ρ) dρ+ α
r∫
l

ρT (ρ, t) dρ

)
+

+
r

2ω
A(t)− 1

2rµ
B(t).

(9)

where ω = µ(3λ+ 2µ)/(λ+ 2µ).
Integrating equilibrium equation (3) on the condition (5)

for stresses in plastic flow domains one reads:

σrr = −
4

r2

r∫
l

ρk(ρ, t) dρ+
1

r2
X(t),

σϕϕ =
4

r2

r∫
l

ρk(ρ, t) dρ− 1

r2
X(t)− 4k(r, t),

(10)

where X(t) is an unknown function.
It is necessary to calculate the components of the plastic

strains for finding of the radial displacement in the plastic
flow domain. Let’s use equation (1), (6) by substituting in
equation (2). After rearrangements we find:

prr = pϕϕ =
4

γ
k(r, t)− αT (r, t) + Y (t) (11)

The formula for the radial displacement with the considera-
tion of the calculated strains (11) rewrite as follows

ur =
2

µr

r∫
l

ρk(ρ, t) dρ− 1

2µr
X(t) + rY (t). (12)

Here Y (t) is an unknown function.

III. PROBLEM STATEMENT AND NUMERICAL RESULTS

The material parameters corresponding to cooper were
used for further computations as shown in Table I.

We assume that, in the time t = t0 the boundary of the
circle area 0 < r < R0 is stresses free

σrr(R) = 0 (13)

TABLE I
MATERIAL CONSTANTS

Symbol Quantity Value

R Radius of disk 0.2 m

R0 Radius of heat influence area 0.02 m

Tk Maximum temperature difference 700 K

β Parameter of decreasing yield stress 0.4

k0 Initial yield stress at T = 0 80× 106 Pa

x Rate of heating 0.5

λ Lamé constant 91.2× 109 Pa

µ Lamé constant (shear modulus) 42.9× 109 Pa

α coefficient of linear thermal expansion 17× 10−6 K−1

and heated by law

T = Tk(1− e−xt), (14)

where x is the positive heat rate.
Solution of the heat conduction equation (see in details

[17]) with the boundary conditions (14) and

T,r(R, t) = 0

and initial condition

T (r, 0) = 0

corresponds to fast heating of a material up to the predeter-
mined temperature Tk as shown on Fig. 1.
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Fig. 1. Temperature field. T1 = T (t1), T2 = T (t2), T3 = T (t3),
T4 = T (t4), T5 = T (t5), t0 < t1 < t2 < t3 < t4 < t5.

Till the time t = tp the strain-stress state is determining
by equations (8)–(9), where a = l, Pr = 0 and the unknown
functions A(t), B(t) are computed by

A =
αγ

R2

R∫
0

ρT (ρ, t) dρ, B = 0. (15)

From the time t = tp a yield condition (5) is valid in
plastic flow domain 0 < r < a with elastic-plastic border
a(t) for t > tp.

Let’s remark here, that Tresca‘s yield condition in the
considering case is transformed to

σrr = σϕϕ = −2k.
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Substituting this condition into the equilibrium equation (3)
we could get contradiction k,r(r, t) = 0 in the elastic domain
R0 < r < a.

The strain-stress state in the plastic flow domain 0 < r < a
is determined by equations (10)–(12), where l = 0. The
strain-stress state in the unloading domain a < r < R
can be calculated by equations (8)–(9), where l = a,
Pr = 0. Equations (8)–(12) contain new time dependent
functions A(t), B(t), X(t), Y (t). They are possible to find
from the constraints for continuity of the stresses and radial
displacement across elastic-plastic border a by formulae

A =

4
a∫
0

ρk(ρ, t) dρ+ αγ
R∫
a

ρT (ρ, t) dρ

R2 − a2
,

B =

4R2
a∫
0

ρk(ρ, t) dρ+ αγa2
R∫
a

ρT (ρ, t) dρ

a2 −R2
,

X = 0, Y =

8
a∫
0

ρk(ρ, t) dρ+ αγ
R∫
a

ρT (ρ, t) dρ

γ(R2 − a2)
.

(16)

The value a is possible to find numerically from the
equation prr(a, t) = 0 for the different times t > tp.

Thermal stresses during plastic flow are presented on the
Fig. 2.
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Fig. 2. Thermal Stresses. Plastic Flow.

It’s possible to determine the origin time of a material
unloading by means of two equivalent ways. On the one
hand, the material unloading leads to stop of the plastic
strains growth. So, the condition of material unloading could
be written in the form prr,t(b, t) = 0, where b is the
second elastic-plastic border. On the other hand, if we
assume, that the material unloading was appearing in the
time t = tu, it could be yield condition failure (5). In this
case, the condition of unloading could be proposed in the
form σrr,t(b, t) + σϕϕ,t(b, t) = −4k,t(b, t). Thus, there are
3 different domains, when t > tu:

• the unloading domain (0 < r < b), l = 0 with
accumulated irreversible strains Pr,

• the plastic flow domain (b < r < a), l = b,
• the unloading domain (a < r < R), l = a without

irreversible strains.

The equations (8)–(12) for stresses and radial displacement
in each of these domains contain own unknown functions
A(t), B(t), X(t), Y (t), which are possible to find from for
the stress-strain state parameters continuity conditions on an
elastic-plastic borders a, b.

In the unloading domain a < r < R:

A(t) =M1

a∫
b

ρk(ρ, t)dρ+ µM2

b∫
0

ρPr(ρ)dρ+

+αµM2

b∫
0

ρT (ρ, t)dρ− 1

4
(αγM2)

b∫
a

ρT (ρ, t)dρ+

+αµM2

R∫
a

ρT (ρ, t)dρ,

B(t) = −R2M1

a∫
b

ρk(ρ, t) dρ−R2µM2

b∫
0

ρPr(ρ) dρ−

−R2αµM2

b∫
0

ρT (ρ, t) dρ+

R2M1αγ
b∫
a

ρT (ρ, t)dρ

4(λ+ 2µ)
+

+
(
b2 − a2

)
αγM1

R∫
a

ρT (ρ, t)dρ,

M1 =
4(λ+ 2µ)

4R2(λ+ µ)− a2(λ+ 2µ) + b2(λ+ 2µ)
,

M2 =
4(3λ+ 2µ)

4R2(λ+ µ)− a2(λ+ 2µ) + b2(λ+ 2µ)
.

In the unloading domain 0 < r < b:

A(t) =

(
R2 − a2

)
αγM2

b∫
a

ρT (ρ, t) dρ

4b2
+

+

µM2Sa
b∫
0

ρPr(ρ) dρ

4b2(λ+ µ)
+

SRM1

a∫
b

ρk(ρ, t) dρ

b2(λ+ 2µ)
+

+

αµM2Sa
b∫
0

ρT (ρ, t) dρ

4b2M(λ+ µ)
+

αµM2Sa
R∫
a

ρT (ρ, t) dρ

4b2(λ+ µ)
,

B(t) = 0,

SR = b2(λ+ 2µ) +R2(3λ+ 2µ),

Sa = b2(λ+ 2µ) + a2(3λ+ 2µ).

In the plastic flow domain b < r < a:

X(t) = −
(
R2 − a2

)
µM2

b∫
0

ρPr(ρ)dρ−

−
(
R2 − a2

)
αµM2

b∫
0

ρT (ρ, t)dρ+

+
1

4

((
R2 − a2

)
αγM2

) b∫
a

ρT (ρ, t)dρ+

+

(αγM1Sa)
R∫
a

ρT (ρ, t)dρ

4(λ+ 2µ)
+

(M1SR)
a∫
b

ρk(ρ, t)dρ

λ+ 2µ
,
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Y (t) =

2M1

a∫
b

ρk(ρ, t)dρ

γ
+

(2µM2)
b∫
0

ρPr(ρ)dρ

γ
+

+

(2αµM2)
b∫
0

ρT (ρ, t)dρ

γ
− 1

2
(αM2)

b∫
a

ρT (ρ, t)dρ+

+

(2αµM2)
R∫
a

ρT (ρ, t)dρ

γ
.

The elastic-plastic borders and a level of the irreversible
strains were computed numerically.

It’s needed to solve the system of nonlinear equations
relative to unknown values a, b, Pr in the times ti:

prr(b, ti) = Pr(b),

prr,t(b, ti) = 0,

prr(a, ti) = 0.

(17)

Integrals, containing the irreversible strains in this system
of equations, are changing by approximation according to
the method of trapezium [3].

The condition a = b at the time tn means the full
unloading of the disk. Material of the disk is deformed
elastically for t > tn.

The results of calculation of the residual stresses and
radial displacement are presented on the Fig. 3 and Fig. 4
respectively.
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Fig. 3. Thermal Stresses. Unloading.

IV. CONCLUSION

The results of the calculations suggest that irreversible
strains and stresses are decreasing the disk size under cooling
down (Fig. 4). The high level of the positive residual stresses
in the center of the disk (Fig. 3) means the possibility of the
secondary plastic flow occurrence with the opposite sign in
the yield condition (5). Moreover, the size of the domain of
the thermal influence impacts on the final distribution of the
residual stresses. The process of the plastic flow could be
appeared in the distant from the disk center with increasing
of the radius [12]. The next study of the similar problems

0 0.5 0.75
−4

−3

−2

−1

b r/R

ur/R · 104

Fig. 4. Radial Displacement.

could be dealing with simultaneous taking account of the
relation of the yield stress on temperature and linear strain
hardening [13] under the yield condition (5).
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