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THE NORMAL VELOCITY OF THE POPULATION FRONT IN THE

“PREDATOR–PREY” MODEL
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and Junnosuke Okajima4

Abstract. The propagation of one and two-dimensional waves of populations are numerically inves-
tigated in the framework of the “predator–prey” model with the Arditi - Ginzburg trophic function.
The propagation of prey and predator population waves and the propagation of co-existing pop-
ulations’ waves are considered. The simulations demonstrate that even in the case of an unstable
quasi-equilibrium state of the system, which is established behind the front of a traveling wave, the
propagation velocity of the joint population wave is a well-defined function. The calculated average
propagation velocity of a cellular non-stationary wave front is determined uniquely for a given set of
problem parameters. The estimations of the wave propagation velocity are obtained for both the case
of a plane and cellular wave fronts of populations. The structure and velocity of outward propagating
circular cellular wave are investigated to clarify the local curvature and scaling effects on the wave
dynamics.
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1. Introduction

The predator–prey models are applied to describe nonlinear dynamics of population of many living organisms,
in particular, of plankton. Modeling of the phyto- and zooplankton population dynamics is important for
estimations of the marine bio stocks since plankton is part of the basic chain of aquatic ecosystems [9, 15,
18, 21, 26]. Classical models of plankton dynamics [5, 7, 8, 11] describe time evolution of the concentration of
phyto-, zooplankton and the nutrients concentrations in the surroundings.

Existing models differ in specification of the processes that determine the development of plankton, consist-
ing of various types of microorganisms, the interactions among microorganisms, the distributions of nutrient
concentrations and the influence of physical properties of the environment, such as solar radiation, convective
transfer, and others [4].

Keywords and phrases: Reaction–diffusion system, front propagation, spatiotemporal instability, ratio-dependent functional
response.
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In the simplest case, the dynamic behavior of the phytoplankton population can be described by the nonlinear
Kolmogorov-Petrovsky-Piskunov-Fisher equation (Fisher-KPP equation) [10, 17], which is encountered in heat
and mass transfer problems, combustion theory, biology and ecology, in plasma physics and in the theory of
phase transitions. This model includes only the growth rate, extinction and diffusion transfer of the plankton
concentration. One of the most important properties of Fisher-KPP equation is the existence of a solution
describing the front of a growing plankton population, which propagates at a constant speed along the normal to
the surface of the colony. The population growth autowave propagating through the medium has a characteristic
internal structure or “wave thickness” with a scale of lp =

√
Dp/r, where Dp is the diffusion coefficient of

plankton, and r is the characteristic time of the plankton growth. When the characteristic spatial size of the
population is much larger than the internal structure of the wave, the population boundary can be considered
as a surface (front) propagating relative to the environment with a given speed. In this case, the growth of the
colony surface in a stationary or moving medium can be described by a simple kinematic equation for the front
propagating with constant normal velocity in a given flow field, similar to the G-equation in combustion theory
[14, 29].

Since the plankton density inside the colony is usually constant (or can be appropriate determined), data on
the temporal evolution of the population boundary allow predicting the growth of total plankton mass with an
arbitrary initial shape and to describe plankton evolution in a given flow field of the environment. Note that
this approach can be applied only in the case when the size of the population is much larger than the internal
structure of the autowave of population.

Population autowaves also appear in other more complex models of plankton growth, for example, in the
Nutrient, Phytoplankton, Zooplankton (NPZ) model, which takes into account the changes of the nutrients, the
phytoplankton, and the zooplankton concentrations [22]. The main goal of the present study is to analyze the
dynamics of the autowaves describing by the partial case of the NPZ model, when the nutrients concentration is
constant and large enough. The characteristic feature of the model is appearance, in some cases, of the diffusive
instability or Turing instability of the plankton population [2, 16, 19, 23, 28]. The diffusive instability manifests
in formation of patching structures ahead of the propagating front and in appearance of the separate cells or
“fingers” at the front of population. In this study, we show that at a certain choice of spatial and temporal
scales, the propagation dynamics of the ecological communities can be described by using the front concept.
The population’s front is considered boundary separating areas with a distributed zoo- and phytoplankton
populations and the areas where plankton is absent.

A similar approach was used earlier in works on the propagation of sporadic combustion waves consisting of
individual flame cells. In a sporadic combustion wave, there is a collective spread of the foci due to the exchange
of heat and the reagents among the individual foci. As it is shown in [13] the propagation speed of the sporadic
combustion wave front is a well-defined value, despite the complex unsteady internal structure of the sporadic
combustion wave. Note that combustion waves and the autowaves of biological population growth belong to
the same class of the reaction-diffusion systems, differing only in the type of nonlinear interaction among the
reagents of the system.

In this study, using the “predator–prey” model as an example, we introduce the concept of the normal propa-
gation speed of the population front, which depends on the problem parameters such as the diffusion coefficients,
the plankton growth rates, the mortality and the predation rates. Using numerical modeling, the features of the
populations front propagation in a system with diffusion instability are investigated, the propagation velocities
of the population’s front with sporadic structure are determined, and the regularities are revealed that make it
possible to estimate the propagation velocities for a given set of problem parameters.

2. “Predator–prey” model

To study the dynamics of populations, a reaction-diffusion “predator–prey” model is used. The two-component
”predator–prey” model in the two-dimensional case has the form
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∂P

∂T
= DP

(
∂2P

∂X2
+
∂2P

∂Y 2

)
+ F (P,Z)

∂Z

∂T
= DZ

(
∂2Z

∂X2
+
∂2Z

∂Y 2

)
+G(P,Z)

(2.1)

Here T is the time; X, Y are the spatial coordinates; P (X,Y, T ), Z(X,Y, T ) are the distribution densities of
the prey and predator populations; DP , DZ are the corresponding diffusion coefficients and F , G are functions
describing local kinetics of the system (2.1).

This study focuses on models that admit autowave solutions that describe the propagation of population
fronts even in the case of diffusion instability. One of the known models in ecology, where dissipative structures
can form, is the Arditi-Ginzburg model [1] with the following functions:

F (P,Z) = rP

(
1− P

P0

)
− g(P,Z)Z, G(P,Z) = σg(P,Z)Z − µZ, g(P,Z) =

αP

Z + αβP
(2.2)

Here r is the growth rate of the prey; P0 is the maximum achievable prey population density in the absence of a
predator. In the formula for the G function, the conversion factor σ determines the efficiency of food assimilation,
and µ is the mortality rate of a predator (zooplankton). g(P,Z) is the trophic function (functional response)
depending on the ratio of prey to predator densities. Function g quantitatively characterizes the dependence of
prey absorption by predators per unit of time. Parameter α is the coefficient of predation, and the parameter β
is the time spent by the predator in searching for prey and processing food. There are many nonlinear functional
responses represented, for example, in [24], where approximating functions consider the saturation of predators,
prey searching time, and other factors. Present model allows the detailed description of the population dynamics
in such systems as plankton communities (phytoplankton-zooplankton) in comparison with the classical two-
component models with functional responses of Holling type or models of the Lotka-Volterra type [27].

The functional dependence g(P,Z) has a significant drawback associated with the uncertainty of the func-
tional response at zero values of population density. In the present model, the additional assumption is used to
eliminate the uncertainty of the g function at the point P = 0, Z = 0:

F (0, 0) = 0, G(0, 0) = 0 (2.3)

Note that in the more complex Beddington–DeAngelis model (BDA) [3, 6], the function g(P,Z) is written in
the form

g(P,Z) =
αP

h+ γZ + αβP

In the BDA model, the function g and its partial derivatives with respect to P and Z have no singularities and
vanish at the point P = 0, Z = 0. For small values of the parameter h → 0, the BDA model asymptotically
transforms into the Arditi-Ginzburg model. In this study, using the Arditi-Ginzburg model, we will assume that
the derivatives and the function g(P,Z) itself at the point P = 0, Z = 0 are equal to zero.

In dimensionless variables p = P/P0, z = Z/(αβP0), x = X
√
r/DP , y = Y

√
r/DP , t = rT , the system of

equations (2.1) has the form
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(2.4)
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Here a, d, m and s are the following dimensionless parameters:

a =
α

r
, d =

DZ

DP
, m =

µ

r
, s =

σ

βr
(2.5)

The system of equations (2.4) is supplemented by the boundary conditions for the absence of flows at the
boundaries of the computational domain and the initial conditions.

3. Stationary solutions and their linear stability

Stationary, space-homogeneous states of the system (2.4) are described by solutions of the following algebraic
equations:

p(1− p)− az p

z + p
= 0, sz

p

z + p
−mz = 0 (3.1)

The system of algebraic equation (3.1) has three solutions. The first solution (I) describes the absence of
population p1s = 0, z1s = 0.

The second solution (II), p2s = p∗, z2s = z∗, where

p∗ = 1− a(s−m)

s
, z∗ =

p∗(s−m)

m
(3.2)

describes the case of coexistence of both types of species. From (3.2) it follows that the inequality s > m is a
necessary condition for the existence of predator in the system: the mortality of a predator should be lower than
its birth rate.

The third stationary state (III) corresponds to the case when the prey density is maximum p3s = 1, and
there are no predators z3s = 0.

To study the linear stability of the stationary solutions of (3.1), the perturbed variables are written as follows:

p = ps + p̄φ, z = zs + z̄φ (3.3)

All perturbed quantities contain the factor φ = exp(Ωt + ikxx + ikyy) , where Ω is the growth rate of

perturbations with a perturbation wavelength k =
√
k2x + k2y, i is the imaginary unit.

Substituting expressions (3.3) into equations (2.4) and linearizing them with respect to perturbations, one
can obtain a homogeneous system of equations for p̄ and z̄. The condition for the existence of a solution can be
written in the form of a dispersion equation for the increment Ω

(Ω− 1 + k2 + 2ps + ag′p)(Ω + k2d+m− sg′z) = −asg′pg′z (3.4)

Here g = zp/(z+ p) , g′p = ∂g/∂p and g′z = ∂g/∂z are partial derivatives of g determined at the stationary point
p = ps, z = zs.

At the stationary point ps = 0, zs = 0, where g′p = 0 and g′z = 0, the solutions of dispersion equation (3.4)
read Ω1 = 1− k2 and Ω2 = −m− dk2 . Since Ω1 is positive for k < 1 the state (I) is unstable.

At the stationary pointps = 1, zs = 0, where g′p = 0 and g′z = 1, the solutions of dispersion equation (3.4)
read Ω1 = −1− k2 and Ω2 = s−m− dk2. The coefficient s related with generation of predator has to be larger
than coefficient of mortality m. In this case the Ω2 is positive in some range of the wave numbers near the point
k = 0. Thus, the state (III) is unstable.
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At the stationary point ps = p∗, zs = z∗ the derivatives are the following g′p(p∗, z∗) = c2(1− c)2, g′z(p∗, z∗) =
c2, where c = m/s. The dispersion equation, in this case, can be written in the form of quadratic equation

Ω2 +AΩ +B = 0 (3.5)

Here

A = 1 + (m− 2a) (1− c)− ac2(1− c)2 + (1 + d)k2

B = m(1− c)(1− 2a+ 2ac− ac2(1− c)) + k2(m(1− c) + d(1− 2a(1− c) + ac2(1− c)2)) + dk4

The two roots of equation (3.5) read

Ω1,2 = −A
2
±
(
A2

4
−B

)1/2

.

The instability occurs if the real part of increment Ω1,2 is positive Re(Ω1,2) > 0. It can be realized if A is
negative A < 0 or in the case of negative B (B < 0) and any sign of A. The conditions of instability A < 0 can
be written as

a(1− c2)− (1 + d)k2 > 1 +m(1− c) (3.6)

It follows from this condition that the greatest value of the growth rate of disturbances is achieved in the absence
of spatial disturbances (k = 0). Disturbances with a wavelength greater than the critical value 2π/k∗, which is
determined by the condition A(k∗) = 0, are unstable.

The conditions of instability B < 0 reads

m(1− c)(1− ac(1− c2) + k2(m(1− c)) + d(1− a(1− c2))) + dk4 < 0 (3.7)

The minimal value of the expression on the right-hand side of the inequality is achieved at k = kcr, where

2dk2cr = d(a(1− c2)− 1)−m(1− c)

This type of instability is possible only if B(kcr) < 0.
Conditions (3.6) and (3.7) determine the set of parameters a, d, m, a under which the formation of spatial

structures in the distribution of concentrations can be observed.
The four typical dependencies of real <(Ω1(k)) and imaginary parts =(Ω1(k)) of growth rates on the wave

number k evaluated for different parameters a, d, m, s are shown at Figure 1.
Figure 2 shows the regions of different instability modes of the stationary stateps = p∗, zs = z∗, calculated

for fixed values s = 1 and m = 0.6 in the plane (a, d).
In the case a) the concentrations of species remain uniform in the space and equal to stationary values ps = p∗,

zs = z∗. The one-dimensional instability (case b)) can lead to extinction of one or both types of populations.
The development of oscillating instability of spatial perturbations in the cases c) and d) can manifest itself as
appearance of spots or other nonstationary patterns in the distributions of the both types of species [2]. In these
nonstationary states, the averaged concentrations in space and time are constant values. Therefore such state
can be considered as quasi-stationary states, because the mean population concentrations are constant values
and both types of species exist infinitely long time. If the populations in stationary or quasi-stationary states
are restricted by a domain located in the surrounding medium, where population distribution is in unstable
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Figure 1. The dependencies of real <(Ω1(k)) (solid lines) and imaginary =(Ω1(k)) (dashed
lines) parts of growth rates on the wave number k obtained from linear stability analylis of
stationary state ps = p∗, zs = z∗ and evaluated for s = 1, m = 0.6 and different parameters a
and d. (a) Stable state, d = 1, a = 1. (b) Instability with oscillations of long wave perturbations
0 < k < k1, d = 2, a = 2. (c) Instability with respect of spatial perturbations without oscilla-
tions in the diapason of wave numbers k2 < k < k3, d = 10, a = 1.9. (d) Instability without
oscillations in the diapason of wave numbers k5 < k < k6 accompanied by oscillating instability
of long wave perturbations 0 < k < k4, d = 5, a = 2.1.

states of first (I) type, the domain of populations can expand and occupy territory with unstable populations.
In the next sections, we consider the propagation of fronts of such populations in the surroundings.

4. Numerical method

The nonstationary problem of the wave propagation is numerically investigated within the framework of equa-
tions (2.4). The system of equations (2.4) is solved by using an explicit finite-difference forward time centered
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Figure 2. The regions of different instability modes of the stationary state ps = p∗, zs = z∗,
calculated for the fixed values s = 1 and m = 0.6 in the plane (a, d). The red dotted line
corresponds to the stability boundary calculated by the equation B = 0, provided k2cr > 0. The
vertical line is the border of neutral stability k = 0 calculated by the equation A = 0.

space numerical scheme (FTCS) [25]. One dimensional simulations are conducted in the domain 0 < x < L,
where L = 1000 with a uniform grid.

Calculations of two-dimensional waves are carried out for a rectangular computational domain 0 < x < L,
0 < y < H. Integration over time is carried out with a step τ = 10−4, which ensure the convergence of solutions.
The accuracy of the algorithm is checked by comparison of the simulation results on the sequence of the grid
refinement. Simulations performed on the grids of mesh sizes δ = 1, 0.1 and 0.01 have demonstrated qualitatively
identical behavior in the wide range of problem parameters. Herewith, the average speeds of the wave differ by
less than 0.1% for the grids with meshes 0.1 and 0.01. We choose the grid with mesh δ= 0.1 so that at least 10
nodes identify the internal structure of the wave.

The zero boundary conditions for concentrations fluxes are used at the boundary of the domain.
At the initial moment, the distributions of both types of species are set constant in two regions of the

computational domain, in such a way that the equilibrium or quasi-equilibrium state is located in the left
region, and the unstable state on the right. The detailed description of the initial conditions one can find in the
next sections. During evolution, a wave of population be formed, which propagated from left to right.

Let J(ti) is the total number of nodes of the computational grid, in which the concentration of organisms,
at least once for the entire calculation time ti, take on a value greater than some small threshold value ε. In
the two-dimensional case, the area of such a colony at time ti is equal to J(ti) δ

2. If the colony spreads in a
rectangular channel, then the ratio of the colony area to the lateral dimension of the channel H will be equal to
the average position of the wave front of the populationX̄F (ti) = J(ti)δ

2/H. In one-dimensional calculations,
the product of the number of nodes and the spatial step of the computational grid δ specifies the coordinate of
the front XF (ti) = J(ti)δ at the time t = ti.

The mean front propagation speed versus time is calculated by the formula

v(ti) =
X̄F (ti + ∆t)− X̄F (ti)

∆t
(4.1)

where ∆t is the time interval. The choice of the time interval has to be such that the difference between the
averages positions of the front X̄F (ti + ∆t)− X̄F (ti) would be greater than the characteristic size of the internal
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structure of the wave. Noting that in the case of a cellular front, the interval X̄F (ti + ∆t)− X̄F (ti) has to be
at least greater than several characteristic cell sizes.

In the case of a diverging circular wave, expression (4.1) is used to calculate the average radial velocity, in
which, instead of X̄F (ti) the average colony radius R̄F (ti) is substituted.

The average colony radius R̄F (ti) is determined by the expressions

J(ti)δ
2 = πR̄2

F (ti), R̄F (ti) =

√
δ2J(ti)

π
. (4.2)

5. One-dimensional population wave

Three cases of the traveling waves formation are considered below.

5.1. Propagation of prey population front in the absence of predators

In the case when there are no predators in the environment (z = 0), system (2.4) is simplified to one equation
for the prey concentration p, which has the form of the KPP-Fisher equation:

∂p

∂t
=
∂2p

∂x2
+ p(1− p) (5.1)

The KPP-Fisher equation [17] has self-similar solutions p(x−vt) describing the propagation of the population
front at a constant velocity v over a medium where prey population is absent. The only solution with minimal
possible velocity v = 2 is stable among others with larger velocities. Far behind the wave front, the prey
concentration is equal to the maximum possible value p = 1. Within the framework of the KPP-Fisher model,
this state with the maximum concentration of prey is stable. In the case of a more complex model (2.4), assuming
the possibility of the existence of predators eating preys, the state with a constant prey concentration p = 1
becomes unstable. In this case, model (2.4) has solutions that describe the propagation of a wave of predators
over a prey colony with a concentration of p = 1.

5.2. Propagation of predator population wave along the prey field

Suppose that at the initial moment the population’s distribution is given by step functions of the form

p(x, 0) =

{
p∗, 0 < x ≤ x0 + w
1, x0 < x ≤ L z(x, 0) =

{
z∗, 0 < x ≤ x0
0, x0 < x ≤ L (5.2)

Here w ≥ 0 is the width of the area separating the boundary between the prey and predator populations.
Distributions (5.2) correspond to the case when in a certain area both types of populations coexist in equilibrium
(p∗, z∗) (3.2), and outside this area there is only prey population with the constant concentration p = 1.

The numerical solution of system (2.4) with the initial conditions (5.2) showed that after a certain transitional
state, a predator wave is formed, which propagates at a constant speed over the area occupied by prey colony.
The numerical calculations of the propagation velocity of the predator population front by formula (4.1) is in
good agreement with the theoretical formula

v = 2
√
d(s−m) (5.3)

This formula follows from [17] for the propagation velocity of the autowave front in the model, which is described
by the equation

∂p

∂t
= D

∂2p

∂x2
+W (p) (5.4)
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Figure 3. Distribution of the predators (red curve) and the preys (blue curve) concentrations
in the traveling wave, calculated for values corresponding to a steady state p = p∗, z = z∗

far behind the wave front. s = 2, m = 0.6, a = 1, d = 2. The dotted lines show the initial
distributions.

Provided that the function W (p) ≥ 0 for all values p, the propagation velocity of the autowave p(x − vt) is
described by the expression

v = 2
√
DW ′(0) (5.5)

If predators propagate over an area with prey concentration p = p0, then the function W (z) in the equation
for the predators concentration z in system (2.4) has the form

W (z) = s
p0z

p0 + z
−mz, W ′(z) =

p20s−m(p0 + z)2

(p0 + z)2
,W ′(0) = s−m

From here, using formula (5.5), one can obtain an estimate for the speed (5.3). In the case when the concentration
distribution p = p∗, z = z∗ behind the traveling wave is a stable state, the wave propagates at a constant velocity
described by formula (5.5). Typical spatial distributions of preys and predators concentrations are shown in
Figure 3.

In the case when the concentration distribution p = p∗, z = z∗ behind the traveling wave is unstable, two
characteristic modes of wave propagation are realized. In the first case, when the state is unstable and the
growth rate of Ω has maximum at k = 0 (see Fig. 1b), the predators population wave is localized in space and
it has a bell-like shape. The concentration distributions in the wave for this case are shown in Figure 4.

In the second case when the final state is unstable with respect to disturbances with a nonzero wavelength,
as, for example, in Figure 1c and d, the concentration distribution in the wave is shown in Figure 5. Behind
the wave front, the population concentrations experience damped fluctuations, which turn into regular periodic
fluctuations in the concentrations in the far field.

Note that the average speed of the front in all considered cases tends to a constant value determined by
formula (5.3) and the difference between the theoretical and the calculated speeds is less than 0.1% in all cases.



10 E. DATS ET AL.

Figure 4. Distribution of the predators (red curve) and the preys (blue curve) concentrations
in the traveling wave evaluated for s = 1, m = 0.6, a = 2.2, d = 1. The dotted lines show the
initial distributions.

Figure 5. Distribution of the predators (red curve) and the preys (blue curve) concentrations
in a traveling wave, calculated for the values s = 1, m = 0.6, a = 1.9, d = 10.

5.3. Propagation of coexisting prey and predator populations to an area where both
populations are absent

This formulation of the problem corresponds to the case when in a certain area, there is an equilibrium
or quasi-equilibrium state between a predator and a prey, and outside this area, both populations are absent.
The characteristic feature the populations’ fronts propagation in this case is the formation of two population
waves - the wave of predators and the wave of prey, moving with different speeds. At the initial moment, the
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Figure 6. Distribution of the predator (red curve) and the prey (blue curve) concentrations
in diverging traveling waves evaluated for s = 1, m = 0.6, a = 1, d = 1 at different times. The
dotted lines are the initial distributions.

concentration distribution is given as follows

p(x, 0) =

{
p∗, 0 < x ≤ x0 + w

0, x0 < x ≤ L z(x, 0) =

{
z∗, 0 < x ≤ x0
0, x0 < x ≤ L (5.6)

If the width of the region w is very large, then two, practically not interacting, waves of the preys and the
predators can be formed. In this case, the preys wave propagates in a space free from preys with a dimensionless
speed 2. The predators wave follows the preys wave and propagates through the preys colony with a speed
specified by expression (5.3). If the speed of the predators wave is less than the speed of the preys wave

v = 2
√
d(s−m) ≤ 2 (5.7)

then the distance between the waves is constantly increasing and the predators wave lags behind the preys wave.
Figure 6 shows the concentrations profiles in diverging waves at different points in time. With a sufficiently

large distance between the fronts, the concentration distributions and the wave structures will be the same as
for the single waves considered before.

Calculations have shown that if the speed of the prey wave is greater than the speed of the predator wave,
then one wave overtakes the other, and in the future, both waves propagate with the same speed. It occurs
when the following condition is fulfilled

v = 2
√
d(s−m) > 2, d(s−m) > 1 (5.8)

The speed of the two wave’s joint propagation is always less than the speed of prey wave propagation in the
absence of predators.

Figure 7 shows the distributions of populations when the two waves of biological organisms propagate
together. The results of calculations demonstrating the effect of the coefficients a, d on the speed of two waves
joint propagation, at fixed values of the parameters s = 1, m = 0.6, are shown in Figure 8.
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Figure 7. Distribution of the predators (red curve) and the preys (blue curve) concentrations
in joint propagation of two waves evaluated for a = 1.5, d = 5, s = 1, m = 0.6. The dotted lines
are the initial distributions.

Figure 8. The dependence of the front propagation speed v on the parameter a evaluated for
d = 3 (green curve), d = 5 (blue curve) and d = 10 (red curve). Hollow squares correspond to
the average values of the velocities calculated at a > 2.1.

It is found that at a ≤ 2.1, the front propagation speed does not depend on time, and at a > 2.1, the speed
of the wave of joint propagation of populations undergoes fluctuations around a certain average value v̄, the
amplitude of which increases with an increase in the parameter a.

When a ≥ 2.5, the extinction of populations occurs over the entire computational domain. Simulations
show that at large diffusion coefficients d > 10, the front propagation speed weakly changes. The hollow
squares correspond to the average values of the velocities calculated at a > 2.1 when the wave propagates
with oscillations.
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Figure 9. The dependencies of the prey wave front coordinate XF (left figure) and the speed of
its propagation v (right figure) depending on time in the case of joint propagation of population
waves evaluated at d = 3, a = 2.3, m = 0.6, s = 1, ∆t = 2. The dotted line indicates the average
speed v = 0.424.

Figure 10. The dependencies of the front propagation velocity on time calculated with different
time interval ∆t = 2 (green line), ∆t = 16 (blue line), ∆t = 32 (red line) and the parameters
d = 3, a = 2.3, m = 0.6, s = 1.

Figure 9 shows the dependencies of the prey wave front coordinate Xr and the speed of its propagation on
time in the case of joint propagation of population waves. The dotted line indicates the average speed. The time
interval in calculations of instant velocity by formula (4.1) is ∆t = 2.

The time dependencies of instant velocity calculated for different time interval ∆t are shown in Figure 10.
Increase in ∆t leads to smoothing of the oscillations and the averaged velocity is irrespective to ∆t.
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Figure 11. The transition of the perturbed initial prey distribution into stable plane wave
corresponding to Figure 1a case. Isolines of the prey concentration p = 0.01 are plotted for
time instances ti = 5, 50, 100, 200, 300, 400, 500, 600. The prey concentration distributions are
evaluated for a = 0.6, d = 5, s = 1, m = 0.6, ψ(y) = 5 sin(15πy/200).

6. Propagation of planar two-dimensional wave

At the initial moment, the concentration distributions are given as follows

p =

{
p∗, 0 < x ≤ x0 + δ + ψ(y)
0, x0 + δ + ψ(y) < x ≤ L z =

{
z∗, 0 < x ≤ x0 − ψ(y)
0, x0 − ψ(y), 0 < x ≤ L (6.1)

where ψ(y) = θ sin(πny/H) is the small perturbation of the boundaries along y axis; δ is the mean distance
between populations and boundary and θ is the amplitude of initial perturbations.

If the wave of the prey population moves faster than the wave of predators, then the waves diverge, as it
occurs in the one-dimensional case shown in Figure 8.

During evolution, the initial disturbances of the wave fronts are smoothed out and the waves become flat.
The propagation velocity of the prey front tends to v = 2 and the propagation velocity of the predator front
tends to that determined by the formula (5.3). At d(s −m) = 1, both waves propagate at the same speed at
some distance from each other.

In the case d(s−m) > 1, regardless of the values of the parameters δ and a, the wave of predator populations
moves faster than the wave of the prey population and, at some instant of time, both waves begin to propagate
together. The waveform in this case can be flat or cellular.

The transition of the perturbed initial distributions into stable plane wave is shown in Figure 11. During
evolution, the initial perturbations at the wave front decay and the wave becomes flat. At the same time, cells
at the wave front can form even when the state behind the wave front is stable. This instability is not associated
with the instability of the state behind the wave front, and the formation of cells occurs due to the difference
in the diffusion coefficients of the predator and prey.

Figure 12 shows an example of the prey population cellular front formation at successive moments of time
when the stationary state behind the front is stable. If the concentration distribution (p∗, z∗) in the region
behind the wave is spatially unstable, the wave front is always cellular. Figure 13 shows the distributions of
concentrations during the joint propagation of cellular waves of a predator and a prey.

In the case Figure 13a, the concentrations distribution behind the front are in the form of stationary spatial
structure that can be called as “spotty” state. The labyrinth- like spatial structures are formed behind the
travelling wave that is shown in Figure 13b. In the case shown in Figure 13c, the nonstationary patterns are
formed with appearing and disappearing spots of concentrations. In the all considered examples, the cells at
the wave front are in continuous motion; the smaller ones increase in size to a certain critical value, and then
fall apart again into smaller ones.

The chaotic motion of the cells occurs in such a way that the average size of the cells is approximately
constant. One can assume that the average size of the cells approximately corresponds to the characteristic
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Figure 12. The prey population cellular front formation. Isolines of the prey concentration
p = 0.01 are plotted for time instances ti = 50, 100, 200, 300, 400, 500, 600, 700, 800, 1000,
1100, 1200. The parameters a = 1.8, d = 5, s = 1, m = 0.6, ψ(y) = 5 sin(15πy/200) correspond
to the case is shown at Figure 1a.

Figure 13. The prey concentration distributions behind the propagating wave. The parameters
are the following: (a) a = 1.9, d = 10, s = 1, m = 0.6, t = 1200; (b) a = 2.1, d = 10, s = 1,
m = 0.6, t = 1400; (c) a = 2.1, d = 5, s = 1, m = 0.6, t = 1200.

scales of disturbances at which the maximum growth rate, obtained from the linear analysis of stability, is
reached. Calculations have shown that the number of local maxima of the front is on average preserved during
wave propagation and their number linearly depends on the transverse size of the computational domain H. On
the other hand, the constancy of the average cell size at the wave front makes it possible to explain the existence
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Figure 14. The propagation velocity of the joint populations wave evaluated for a = 2.1, d = 5,
s = 1, m = 0.6, ∆t = 10 The concentration distributions corresponding to this case is shown
at Figure 13c.

of the average propagation velocity of the cellular wave, which is irrespective to the size of the computational
domain and the type of initial perturbations.

The time dependence of the joint wave propagation velocity corresponding to the case shown in Figure 13c is
shown in Figure 14. The deceleration of the wave propagation speed at the stage 0 < t < 200 is associated with
the transition from the initial distribution to the developed cellular front, which propagates with a constant
average speed.

The results of calculations are presented in Figure 15, allowing to compare the values of the average velocities
of the fronts in the one-dimensional and two-dimensional cases. An increase in the propagation velocity in the
two-dimensional case occurs due to an increase in the total surface of the cellular wave front. The cells have
small amplitudes at the a values close to unit, therefore the difference in the average velocities of 1D and 2D
waves is small. The difference in the velocities of one-dimensional and two-dimensional waves increases with an
increase of the diffusion coefficients d.

7. Propagation of the circular diverging two-dimensional wave

Radial wave propagation may be of interest for the experimental study of population wave propagation, since
this configuration makes it possible to exclude the influence of the external boundaries. In addition, creating in
experiments the initial distribution of a colony of organisms in a small circular area seems to be an easier task
than creating a uniform distribution of organisms in a rectangular area, which is necessary for studying plane
waves of a population. An expanding circular wave with a cellular structure of the front is a convenient object
for studying the dynamic behavior of the cells and studying the effect of the cellular front structure on the wave
propagation speed. In the case, when the radial increase in the wave front leads to an increase in the size of the
formed cells, followed by the growth of secondary cells on their surface, a self-acceleration of the radial wave is
possible due to an increase of its surface.

This phenomenon occurs, for example, with the development of instability on the surface of a radially diverg-
ing flame front [12]. If the size of the cells remains constant on average, then the speed of propagation of the
radial wave will asymptotically approach a constant value, which is equal to the propagation speed of the cellular
front of the plane wave. This section presents the results of a numerical study of a radially diverging wave of
prey and predator joint propagation under conditions when the cellularity of the wave front can form.
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Figure 15. The average velocities of the joint populations wave as function of the a parameter
for d = 3 and d = 10 in one-dimensional (1D) and two-dimensional (2D) cases, calculated
for s = 1, m = 0.6. Hollow squares denote the average velocity of the oscillating front in the
one-dimensional case.

The calculations are carried out in a rectangular area with dimensions L = H = 500 with a uniform com-
putational grid with the step δ = 0.1 in spatial coordinates. The time step is τ = 10−4. The initial conditions
described a uniform distribution of concentrations (p∗,z∗), in a circle with a radius r = r0:{

p = p∗, x2 + y2 ≤ r20
p = 0, x2 + y2 > r20

{
z = z∗, x2 + y2 ≤ r20
z = 0, x2 + y2 > r20

(7.1)

The numerical algorithm is implemented in the OpenFoam environment by using the resources of the computing
cluster of the IAM FEB RAS with 400 Intel Xeon Gold 6230R (2.1 GHz) processors.

Figure 16 shows the prey concentration distributions at various points in time.
The state (p∗,z∗) behind the wave front corresponds to the instability case shown in Figure 1d.
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Figure 16. The dynamics of the prey population distribution propagating from the initial
circle with the radius r0 = 50, evaluated for parameters a = 2.1, d = 5, s = 1, m = 0.6.

Calculations show that during evolution, no significant change in the size of the cells is observed, and the
larger cells are divided into smaller ones at the initial transition stage. In this case, the total surface of the
flame front increases linearly with the increasing radius, like in the case of a uniformly expanding circular
front. Figure 17 shows the dependence of the average front radius on time, which is calculated with a time step
∆t = 2. The wave radius grows linearly with time after a transitional stage in the initial moment of the wave
propagation.

Figure 18 shows the dependence of the front speed on the radius, which is calculated by formula (4.2) with
a time step ∆t = 4.

As it follows from Figure 18, the speed tends to a constant value at large radiuses. The value of the average
radial velocity at large radiuses is close in magnitude to the average propagation velocity of the plane wave
with cellular front calculated for the same values of the parameters. At small values of the colony radius, the
velocity depends on the local curvature of the wave front. This dependency appears by taking into account the
finite thickness of the internal wave structure and it can be useful in evaluating of a colony growth having any
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Figure 17. The average radius versus time corresponding to the case shown in Figure 16.
a = 2.1, d = 5, s = 1, m = 0.6, ∆t = 2.

Figure 18. The dependency of propagation velocity on the wave radius, evaluated for
a = 2.1, d = 5, s = 1, m = 0.6, ∆t = 4, v ≈ 0.58. The red dashed curve is the approximate
dependency (7.2) with χ = 11.24.

smooth shape. The dependency of propagation velocity on the mean wave radius can be written as follows

v = v̄
(

1 +
χ

r

)
(7.2)

where v̄ is the mean propagation velocity of the flat wave with cellular front and χ is the nondimensional length
characterizing the scale of inner wave structure. Note that similar approach is applied in the estimations of
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the flame front curvature effects in combustion theory [20]. The dependency (7.2) is plotted by dashed line
in Figure 18 for χ = 11.24. The value of χ that was roughly estimated by matching dependency (7.2) to the
calculated data.

8. Conclusion

The structure and propagation velocity of one and two-dimensional population’s waves are numerically inves-
tigated in the framework of the “predator–prey” model with the Arditi-Ginzburg trophic function. The
propagation of population’s wave of living organisms occurs due to the growth of an already formed colony
in an area where living organisms are absent, and there are conditions for their reproduction. Inside the colony,
the distribution of the living organism’s concentrations corresponds to a stationary or quasi-stationary state of
the system. In the case of propagation of only a prey population in the absence of predators or distribution of
only predators over an area with a constant concentration of prey, the equations describing wave propagation are
similar to the Kolmogorov-Petrovsky-Piskunov-Fisher equation. In these cases, the wave propagation speed is
the same as in these classical models. The dynamics of wave propagation becomes more complex when the pop-
ulations of the prey and predator behind the wave front are in an unstable, quasi-equilibrium state. In this case,
changes in the concentration of prey and predator in the wave are interrelated, and the two-dimensional wave
sometimes assumes cellular shape with unstable chaotically moving cells. The region of the problem parameters
corresponding a quasi-equilibrium state behind the wave front can be determined by the linear stability analysis
of the homogeneous in space concentrations distribution. Calculations have shown that the spatial instability of
the wave front, at which cells are formed, is observed in a wider range of parameters, compared with the range
of parameters that determine the instability of a state homogeneous in space. The propagation of a joint wave
of a predator and a prey can be non-monotonic, with a speed periodically varying in time. It is shown that
the average propagation speed of a combined wave is a well definite value, even in the case of the formation of
cellular wave front. The simulation results showed that the radial growth rate of the diverging circular popu-
lation at large colony radii is equal to the propagation speed of plane populations’ wave. This allows applying
the concept of normal propagation velocity to estimate the mass growth of organisms in a large colony with
an arbitrary initial shape. In conclusion, we note that the data on the normal velocity and the structure of
the population’s wave can be conveniently used to verify and to refine the model parameters by comparing the
theoretical values with experimental data.
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