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Abstract. Control problems are considered for a two-dimensional model describing wave scattering 
in an unbounded homogenous medium containing an impenetrable covered (cloaked) boundary. The 
control is a surface impedance which enters the boundary condition as a coefficient. The solvability of 
the original scattering problem for 2-D Helmholtz equation and of the control problem is proved. 
Optimality system dгescribing the necessary extremum conditions are derived. The algorithm for 
numerical solving of the control problem based on the optimality system and boundary element 
method is designed. 

Introduction 

It was proposed that perfect invisibility cloaking shells can be constructed for hiding objects from 
electromagnetic illumination [1]. However, the difficulty in fabricating such shells stems from the 
requirements on the material that compose it. Cloak obtained through such technique has anisotropic, 
spatially varying optical constants. In addition, some of the material parameters have infinite values at 
the interior surface of the cloak. In order to facilitate easier realization as well as to avoid infinities in 
optical constants, cloaks with simplified material parameters were proposed. Hence, perfect hiding 
with such a simplified cloak is not possible [2]. Another approach in cloaking material bodies consists 
of coating it's outer boundary with special material having the certain value of surface impedance. In 
this case, the cloaking problem is reduced to choosing the impedance such that the wave scattered by 
the object have certain properties [3,4]. We mention papers [5-10] devoted to development of 
methods of solving impedance cloaking problems based on optimization approach of solving inverse 
problems for the wave equations. It should be noted also papers [11-13] devoted to applying 
optimization methods for solving related problems of technical gas dynamics. 

Formulation and Solvability of the Original Scattering Problem 

Let Ω be bounded region in R2 with a connected complement Ωc = R2 \ Ω and with a boundary Γ. It is 
well known that the problem of scattering waves in a homogenous medium containing an 
impermeable obstacle Ω with a covered boundary is reduced to finding a function u = uinc + us in Ωc 
that satisfy the Helmholtz equation 

∆u + k2
 u = 0    in Ωc,                                                                                                                    (1) 

and obey the impedance boundary condition and the Sommerfield radiation condition in R2 

∂u / ∂n + i k λ u = 0    on Γ,    limr → ∞ √r (∂ us / ∂ r − i k u
s) = 0    as  r = |x| → ∞.                      (2) 
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Here uinc is the incident wave, us is the scattered wave, λ is the surface impedance on boundary Γ, k is 
the wave number, i is the imaginary unit, n is the outward (relative to Ω) unit normal vector. 

The following conditions are assumed below to hold:  
(i) Ω is a bounded domain in R2    with a connected complement Ωc and with a boundary Γ in C0, 1. 

Let us introduce the function spaces to be used in the analysis of problem Eq. 1 – Eq. 3. Let BR be 
a disk of radius R containing Ω, and let Ωe = Ωc ∩ BR. Clearly, Ωe is a bounded domain in R2 with the 
boundary ∂Ωe consisting of two parts: Γ and ΓR where ΓR is a boundary of BR. For any open subset Q 
in BR, we use the Sobolev space H1(Q) of complex or real scalar functions defined in Q. We also use 
the trace spaces H1/2(∂Q) and in particular H1/2(Γ) and H1/2(ΓR). Let H–1/2(∂Q) denote the dual of the 
space H1/2(∂Q) with respect to L2(∂Q). The norms in H1(Q), H1/2(∂Q), and   H–1/2(∂Q) are denoted by 
||·||1, Q, ||·||1/2, ∂Q, ||·||-1/2, ∂Q respectively. The inner products and norms in L2(Q) and L2(∂Q) are 
designated as (·, ·)Q, ||·||Q and (·, ·)∂Q, ||·||∂Q respectively. To describe the impedance λ we use the 
spaces L∞

λ0(Γ) = {λ in L∞(Γ): λ(x) ≥ λ0} and Hs
λ0(Γ) = {λ in Hs(Γ): λ(x) ≥ λ0} with λ0 > 0. Note then 

when s > 1/2 and Γ belongs to C1, 1 the embedding Hs(Γ) to L∞(Γ) is continuous and compact. For 
describing the incident wave we consider the space Hinc( Ωe) = {u in H1(Q): ∆u + k2

 u = 0 as a 
distribution}. 

In order to reduce the problem Eq. 1 – Eq. 2 to the equivalent problem considered in the bounded 
domain Ωe we define a Dirichlet-to-Neumann mapping T: H1/2(ΓR) → H-1/2(ΓR) that maps every 
function g in H1/2(ΓR) to a function ∂v / ∂n where v is a solution of the exterior Dirichlet problem for 
Helmholtz equation with boundary condition v|ΓR = g. It is well known that Eq. 1 – Eq. 2 are 
equivalent to Eq. 1 in Ωe and impedance boundary condition from Eq. 2 with the following boundary 
condition: 

∂u
s / ∂n = T us    on ΓR.                                                                                                                  (3) 

For brevity this problem will be referred to as problem 1. 

Let uinc belongs to Hinc(Ωe). We multiply the Eq. 1 by φ* where φ in H1(Ωe) is a test function, φ* 
means the complex conjugate of φ, integrate over Ωe and apply Green formula. We have 

∫Ωe (grad u · grad φ* − k2 
u φ*) dx = −∫Γ φ* ∂u / ∂n dσ + ∫ΓR φ*

 ∂u / ∂n dσ.                        (4) 

Taking into account boundary conditions Eq. 2 and Eq. 3 we rewrite Eq. 4 in the form 

a0(u,  φ) – i k (λ u,  φ)Γ  = <f,  φ>    for any φ in H1(Ωe),                                                        (5) 

where a0(·, ·), (λ ·, ·) and <f,  ·> are the following sesquiliniear and linear forms: 

a0(u, φ) := ∫Ωe (grad u · grad φ* − k2 
u φ

*) dx − ∫Γr φ
*
 Tu dσ,         (λ u, φ)Γ := ∫Γ λ u φ*

 dσ,             
<f, φ> := ∫ΓR φ

*
 (∂u

inc
 / ∂n − Tu

inc) dσ.                                                                                    (6) 

The solution of Eq. 5 is called the weak solution of problem 1. Using the properties of forms a0(·, ·), 
(λ ·, ·) and <f,  ·> we can prove the following theorem. 

Theorem 1. Under conditions (i) let λ in L∞
λ0(Γ) be an arbitrary function where λ0 > 0. Then for 

every incident wave uinc in Hinc(Ωe) there exist a unique solution uλ to Eq. 5 that satisfies the following 
estimate with a constant Cλ  that depends on λ and is independent of uinc: 

|| uλ ||1, Ωe ≤ Cλ ||u
inc||1, Ωe.                                                                                                           (7) 
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Assuming that the impedance λ belongs to a nonempty bounded subset K of L∞
λ0(Γ) we can prove 

the following theorem. 
Theorem 2. Under conditions (i) let λ in K where K is a nonempty bounded subset of  L∞

λ0(Γ), 
λ0 > 0. Then for every uinc in Hinc(Ωe) a unique solution u to Eq. 5 satisfies the following estimate: 

||u||1, Ωe ≤ C0 ||u
inc||1, Ωe,                                                                                                                   (8) 

with constant C0 independent of λ. 

Control Problem and Optimality System 

Now we are able to formulate our control problem for model Eq. 1, Eq. 2. This problem is to minimize 
a certain cost functional depending on the state (wave field) u and the unknown function (control), 
which satisfy the equations of state in the form of Eq. 5 of problem 1. The control is specified by the 
impedance λ, while the cost functional is either one the following two: 

I1(u) = ||u – ud||2Q = ∫Q |u – ud|2 dx,            I2(u) = ||u – ud||2 = ∫Γq |u – ud|2 dσ.                                 (9) 

Here Q is a subdomain of Ωe, Γq is a continuous cycled curve in Ωe. When ud = uinc the functional I1 
(or I2) is the squared mean square integral norm of the scattered field us over Q (or over Γq). Assume 
the following conditions hold:  
(j) Γ belongs to C1, 1; α0 > 0; and K is a nonempty convex closed subset of Hλ0

s(Γ), where s > 1/2 and 
λ0 > 0. 

Introducing the operator G: H1(Ωe) × K × Hinc(Ωe) → H1(Ωe)
* by <G(u, λ, uinc), φ> = a0(u, φ) – 

i k (λ u, φ)Γ – <f, φ> for every φ from H1(Ωe), where H1(Ωe)
* is a dual space to H1(Ωe), we rewrite 

Eq. 5 in the form G(u, λ, uinc) = 0. Consider the constrained minimization problem 

J(u, λ) := (α0 / 2) I(u) + (α1 / 2) ||λ||2s, Γ → inf,  G(u, λ, uinc) = 0,  (u, λ) in H1(Ωe) × K.              (10) 

Here I = Ik, k = 1, 2. Proceeding as in [3] we arrive to the following theorem. 
Theorem 3. Under conditions (i), (j) let α0 > 0, α1 ≥ 0 and let K be a bounded set and uinc in 

Hinc(Ωe). Then control problem Eq. 11 has a least one solution (u, λ) in H1(Ωe) × K for  I = Ik, k = 1, 2. 
The further analysis of problem Eq. 10 consists in using the extremum principle in smooth convex 

extremum problems [5]. It allows us to derive the necessary extremum conditions and leads to the 
following theorem. 

Theorem 4. Under conditions (i), (j) let (u, λ) in H1(Ωe) × K be a solution of problem Eq. 10 at I 
= Ik, k = 1, 2. Then there exists a unique Lagrange multiplier p in H1(Ωe) that satisfies the 
Euler-Lagrange equation 

a0(φ, p) – i k (λ φ, p)Γ  = – (α0 / 2) <I’u(u), φ>*    for any φ in H1(Ωe),                                 (11) 

and the following minimum principle holds: 

α1 (λ, µ – λ)s, Γ – Re[i k ((µ – λ) u, p)Γ] ≥ 0    for any µ in K.                                               (12) 

Here I’u is a Fréchet derivative of the functional I. 
The weak formulation of problem 1, Eq. 5, Eq. 11, which is interpreted as an adjoint problem for 

the adjoint state p in H1(Ωe), and variational inequality Eq. 12 form an optimality system of problem 
Eq. 10. This system describes the necessary extremum conditions of Eq. 10. 
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Numerical Algorithm for Control Problem 

In order to find the numerical solution of the optimality system we suggest the following algorithm 
based on the idea of simple iteration. Assume that for any step of the algorithm we know some 
approximation λn. Using the λn we find λn+1 by sequential solving the following problems  

a0(un,  φ) – i k (λn un,  φ)Γ  = <f,  φ>    for any φ in H1(Ωe),                                                     (13) 

a0(φ, pn) – i k (λn φ, pn)Γ  = – (α0 / 2) <I’u(un), φ>*    for any φ in H1(Ωe),                                  (14) 

α1 (λn+1, µ – λn+1)s, Γ – Re[i k ((µ – λn+1) un, pn)Γ] ≥ 0    for any µ in K.                                     (15) 

Thus, each step of the algorithm consists of finding the solutions un and pn of Eq. 13 and Eq. 14, 
which are the weak formulations of some external boundary value problems. Using the boundary 
element approach we can reduce these problems to boundary integral equations. Boundary element 
method gives direct numerical values of un|Γ and pn| Γ which are used in Eq. 15 and the way to find un 
and pn in any subdomain of Ωe. 

Summary 

We have analyzed the direct scattering impedance problem and the inverse extremal problem of 
choosing the surface impedance. The solvability of direct and inverse problems is derived. The 
optimality system constructed. Numerical algorithm of solving the control problem based on 
optimality system and boundary element method is proposed. The results of numerical simulations 
will be published in separate authors’ work. 
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