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Abstract— The present study is devoted to the problem of 

unsteady thermal action on hollow elastoplastic cylinder. This 

physical process is mathematically proposed as a quasi-static 

process of the uniform thermal expansion of the hollow 

elastoplastic cylinder. The generalized Prandtl-Reuss 

thermoelastoplastic model is used. The effect of the non-

stationary temperature gradient on the residual stresses field 

formation was investigated under the condition that the yield 

stress depends on a temperature. The borders of the 

irreversible deformation domain and unloading domain are 

computed. The level of residual stresses and strains are 

calculated after the final cooling of the cylinder. 

 

Index Terms— elasticity, heat conduction, plasticity, 

residual strain, residual stress 

I. INTRODUCTION 

HERMAL stresses have a significant effect on details of 

the various mechanisms operating in the high 

temperature gradients. Residual strains and stresses form in 

a non-stationary temperature field variation. Accurate 

determination of the geometry and strength characteristics 

of the concerned materials it is needed because of such 

strains and stresses. As it’s well known, temperature 

influences on the material yield stress by increasing 

probability of the appearance of the plastic deformations. 

Detailed analysis of stress-strain state (SSS) of cylindrical 

bodies under the steady-state thermal action and external 

pressure was considered [1]. The features of formation of 

non-reversible deformation fields were observed for the 

finite size solid cylinder having inner heat source [2]. The 

numerical solutions of the shrink fit problem for discs were 

compared using the Mises yield condition and Tresca yield 

condition [3]. The analytical solution of the shrink fit 

problem for discs considered in condition of yield stress 

dependence on temperature [4]. In [5] the problem of 

formation of residual stresses in a thin plate made of an 

elastoplastic material under a given thermal action was 
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solved.  

Here we present the exact solution of the problem of 

formation of residual stresses under the assumption that the 

connection between the processes of heat conduction and 

deformation under the conditions of intensive thermal 

action can be neglected. Thus, the calculations can be 

performed in the framework of the thermal stresses theory 

(see, for example, [6]) with the yield stress dependence on 

the temperature taken into account. 

The features of residual strains and stresses formation for 

the load-free hollow cylinder with rapidly changing 

temperature gradient on the inner surface were investigated 

in this work. The possibility of the repeated plastic flow 

appearance in case of temperature field aligning was 

observed. The method for determining of the non-reversible 

deformations on the boundary between the plastic flow 

domain and the unloading domain was shown and the 

residual strains and stresses were calculated. 

II. GOVERNING EQUATIONS 

 A framework of thermoelastoplasticity (see [6] for 

details) is used throughout the paper. The schematic of 

infinitely long hollow cylinder with lateral surfaces devoid 

of loads is shown in Fig. 1. ba,  are the inner and outer 

radiuses of hollow cylinder. 
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At the initial time 0t  the temperature of cylinder is 

0)0,( TrT  . At the time 0t  on the outer and inner 

surfaces of the cylinder the following conditions are 

satisfied: 
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Fig. 1.  Schematic of hollow solid cylinder. 
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where x  is the parameter defining the temperature rate 

increasing on the inner surface of the cylinder. The index 

after comma denotes differentiation with respect to the 

corresponding spatial coordinate. At the time t  the 

determination of a constant temperature kTaT )(  follows 

from the equation (2).  

Temperature field is described by the heat equation: 
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where  is the thermal diffusivity. 

 A differentiation in concern the variable r  is denoted by 

a comma herein and below. 

Taking into consideration that infinitesimal strains 

arising due to the thermal action (3) relations for the radial 

and angular components of strain have the following form: 
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where ru  is the radial component of the displacement 

vector, ,ie  ip  are the elastic and plastic components of 

strain tensor. Stresses are determined by the thermoelastic 

strains according to the Duhamel-Neumann Law [6]: 
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where  ,   are Lame parameters,   is the coefficient of 

linear thermal expansion. 

Within the framework the considered problem the radial 

and angular stresses must satisfy the equilibrium equation 

and the corresponding values of the strains must satisfy the 

continuity condition: 
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The Tresca condition is selected as the yield criteria [7]: 

),(2},,max{ Tkzzzzrrrr      (7) 

where )(Tk  is the yield stress at the corresponding 

temperature. For further calculations, we assume the simple 

linear dependence ))((=)( 00 TTTTkTk pp  , where 

0k  is the yield stress at the ambient temperature and pT  is 

the melting point. 

III. SOLUTION 

Both the analytical solution and the computational 

algorithms are existing for the heat equation (3) with 

boundary conditions (2). We assume that the temperature 

distribution is known. 

The solution of the equilibrium equation for the problem 

of thermoelasticity [6] has the form: 
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where    
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Functions )(1 tc , )(2 tc  are determined from the 

boundary conditions (1). 

Increasing the temperature gradient leads to the 

satisfaction of the yield criteria (7) on the inner surface of 

the cylinder at the time pt : 

.2krr                   (9) 

At the time ptt   there is the plastic flow region 

)(1 tara  , where )(1 ta  is the elastoplastic border. 

According to the associated flow rule the incompressibility 

condition follows from (9): 

.0 pprr                   

(10) 

Using the assumption (4) and the Duhamel-Neumann 

Law (5) we obtain the differential equation for 

displacements for the case of plastic strains existence: 
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The dependence between displacements and plastic 

strains also follows from the condition (9): 
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Integrating the system of equations (11), (12) we found:  
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The stresses in the plastic region can be found by 

integrating the system (6), (9): 
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In the elastic deformation region brta )(1  SSS is 

determined by the relations (8) previously obtained with 

accuracy to the new integration constants which together 

with the constants in the plastic region require its 

definition. For this it is needed to solve the system of linear 

equations in the form of boundary conditions (1) and 

continuity conditions of the radial stresses and 

displacements on the elastoplastic border )(1 ta  which is 

determined by the condition 0),( 1 taprr . 

During the temperature field alignment, the non-

reversible strains in the neighborhood of elastoplastic 

border continue to increase whereas on the inner surface its 

rate becomes equal to zero: 

.0),(, 
arrtrr trp              (15) 

Relation (15) corresponds to the beginning of materials 

unloading, i.e. deformation process in which the yield 

condition (9) ceases to be satisfied. At the time rtt   the 

unloading region )(~
1 tara   exists. Displacements and 

stresses are obtained by solving of the equilibrium equation 

(11): 
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where )(ˆ rprr  is the plastic strain captured at the given 

time on the unloading border which is defined by relation 

(15). 

SSS in the region )()(~
11 tarta   and brta )(1  is 

determined by the previously obtained relations with an 

accuracy to the new integration constants. These constants 

with the constants from equations (16) are found from the 

system of linear equations describing the continuity of 

stresses and displacements on the regions boundaries. To 

obtain a function )(ˆ rprr  and relations describing the 

displacement of the plastic flow border and the unloading 

border the following system of equations should be 

numerically solved: 
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The first equation of the system defines the unloading 

border 1
~a , the second one defines the accumulated plastic 

strains, and the third one describes the elastoplastic border 

1a . Subscript i  indicates a time step.  

The integrand )(rf  of the integral yH  (16) can be 

replaced by the piecewise linear approximation at the each 

time step. It allows to submit this integral by the trapezoidal 

rule in the form: 
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To solve the system (17) at the various time points using 

the approximation method we obtain the corresponding 

values of the deformation regions sizes and construct the 

function of the residual strain. The initial parameters of the 

system (17) have a form:  
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IV. RESULTS AND DISCUSSION 

The parameters corresponding to copper were used for 

calculations [9] are shown in Table: 

The solution was found for different values of parameter 

x  (heating rate) in (2). The plastic flow does not appear at 

small values of x  and also at small temperature gradient. 

The appearance of the plastic flow near the border with 

inner surface of the cylinder is observed with increasing of 

TABLE 

MATERIAL CONSTANTS 

Symbol Quantity Value 

a internal radius of 

cylinder 

0.1 m 

b external radius of 

cylinder 

0.2 m
 

λ Lamé constant 91.2  10
9 
Pa 

μ Lamé constant (shear 

modulus)
 

42.9  10
9 
Pa   

k0 yield stress at the 

ambient temperature 
80  10

6 
Pa 

 thermal diffusivity 11.4  10
-6 

m
2
/s 

 coefficient of linear 

thermal expansion  
17  10

-6 
m

2
/s 

T0 initial temperature 293 K 

Tp melting point 1357.77 K 

Tk final temperature 723 K 
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parameter x . Temperature stresses decrease and unloading 

region appears during the temperature gradient alignment. 

The unloading border eventually overtakes the elastoplastic 

border. The condition (9) with the opposite sign in front of 

the yield stress is satisfied on the inner surface of the 

cylinder in case of high values after the complete unloading 

of material. This implies the formation of plastic flow when 

the plastic deformation increases in the opposite direction, 

then so, that decreasing the value of residual strain 

accumulated during heating. The occurrence of repeated 

plastic flow is caused by high residual stresses and also by 

significant decrease of the yield stress. Fig. 2 illustrates the 

residual stresses under the repeated plastic flow, which 

were calculated in fully cooled cylinder. 

Note that the stresses level is independent of the current 

temperature [4] and determined by the temperature gradient 

level. Consequently, the stresses distribution at complete 

heating of the cylinder to a maximum temperature 

coincides with the stress field at complete cooling. Fig. 3 

illustrates the residual strains in case of the repeated plastic 

flow calculated at complete cooling of the cylinder. 

V. CONCLUSION 

The problem of unsteady thermal action on hollow 

elastoplastic cylinder has been considered. This physical 

process has been mathematically proposed as a quasi-static 

process of the uniform thermal expansion of the hollow 

elastoplastic cylinder. The generalized Prandtl-Reuss 

thermoelastoplastic model has been used. The effect of non-

stationary temperature gradient on the residual stresses 

field formation on condition of dependence of the yield 

stress on temperature has been investigated. The resulting 

system has been analytically integrated. The border of 

irreversible deformation domain and unloading domain 

have been computed. The level of residual stresses and 

strains have been calculated after the final cooling of the 

cylinder. The results have been graphically presented. 

REFERENCES 

[1] D. R. Bland. Elastoplastic Thick-Walled Tubes of Work-Hardening 

Material Subject to Internal and External Pressures and to Temperature 

Gradients. Journal of the Mechanics and Physics of Solids. Vol. 4. 

1956. pp. 209–229. 

[2] Y. Orcan, U. Gamer. Elastic–Plastic deformation of centrally heated 

cylinder. Acta Mechanica. Vol. 90. Issue 1–4. 1991. pp. 61–80. 

[3] A. Kovacs. Residual Stresses in Thermally Loaded Shrink Fits. 

Periodica Polytechnica. Ser. Mech. Eng. Vol. 40. №. 2. 1996. pp. 103-

112. 

[4] M. Bengeri, W. Mack. The influence of the temperature dependence of 

the yield stress on the stress distribution in a thermally assembled elastic-

plastic shrink fit. Acta Mechanica. Vol. 103. 1993. pp. 243-257. 

[5] A. A. Burenin, E. P. Dats, E. V. Murashkin Formation of the residual 

stress field under local thermal actions. Mechanics of Solids. N.Y.: 

Allerton Press. Vol. 49, Iss. 2. 2014. pp 218-224. 

[6] B. A. Boley, J. H.Weiner, Theory of Thermal Stresses . Wiley, New 

York. 1960. 

[7] H. Tresca (1864). Mémoire sur l'écoulement des corps solides soumis à 

de fortes pressions. C.R. Acad. Sci. Paris, Vol. 59. 1864. p. 754. 

[8] H. S. Carslaw, J. C. Jager. Conduction of Heat in Solids. Clarendon 

Press, Oxford. 1959. 

[9] W. M. Haynes. CRC handbook of chemistry and physics. Boca Raton, 

Florida: CRC Press. 2014. 
 

Fig. 3.  The residual strains distribution. The plastic flow border 

0.573041 a  and the repeated plastic flow border 0.63482 a  are marked 

by vertical lines. 

 
Fig. 2. The non-dimensional residual stresses distribution. The plastic flow 

border 0.573041 a  and the repeated plastic flow border 0.63482 a  are 

marked by vertical lines. 
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