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The present paper is a continuation of [1] and uses the notation and definitions introduced
there. In [1], the authors also presented the properties of transformation operators, studied new
function spaces, introduced the notion of σ-trace, and proved the direct and inverse trace theorems.
In the present paper, we pose a singular boundary value problem in a domain with a single corner
(singular) point. We prove some auxiliary results. The main result is given by the theorem on the
unique solvability of the corresponding boundary value problem.

1. MAIN RESULT

In the Euclidean two-dimensional space R
2, we introduce polar coordinates r > 0, 0 ≤ ϕ < 2π

centered at the origin O. By SR we denote a circular sector of radius R centered at O with opening
angle Φ ∈ (0, 2π].
Consider a bounded domain Ω ⊂ R

2. Suppose that the origin O belongs to Ω. We assume that
for some R0 > 0, the intersection of Ω with the disk of radius 2R0 centered at O coincides with S2R0 .
Furthermore, we assume that the boundary of Ω is C∞ everywhere except for the point O, which
is assumed to be a corner point. Let GO = ∂Ω\O.
Consider the boundary value problem

∆u = f(x), x ∈ Ω, (1)
u|ΓO

= 0, x ∈ GO, (2)
σu|O = Ψ(ϕ), ϕ ∈ [0,Φ]. (3)

This problem generates the operator

A : u �→ Λu ≡ {∆u, σu|O} .
We equip the space M s = M s × A[0,Φ] with the direct product topology. It follows from the
preceding results that the operator Λ is a continuous mapping of the spaceM s+2 into the space M s,
where s ≥ 0 is even.
The following assertion is the main result of the present paper.

Theorem 1. Let s ≥ 0 be even, and let f ∈M s(Ω) and Ψ ∈ A[0,Φ]. Then there exists a unique
solution u of the above-posed boundary value problem in the space M s+2(Ω). Moreover, f : Ψ→ u
is a continuous mapping of the space M s into the space M s+2(Ω).

Proof. The proof of the theorem consists of several stages. First, let us prove the following
assertion.
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2 KATRAKHOV, KISELEVSKAYA

2. AUXILIARY RESULTS

Theorem 2 (the uniqueness theorem). Let s ≥ 0. Then the homogeneous boundary value
problem (1)–(3) has at most one solution in the space M s+2(Ω).

Proof. Let a solution u of the homogeneous boundary value problem belong to the space
M s+2(Ω). The harmonic function u admits the expansion

u(r, ϕ) =
∞∑

k=1

(
akr

λk + bkr−λk
)
Yk(ϕ) ≡ u′ + u′′

for each r ∈ (0, 2R0). Since the σ-trace of u is equal to the σ-trace of u′′, it follows that both of
them vanish, i.e.,

0 = σu′′|O =
∑

k

bkYk;

therefore, all bk are zero, and so u′′ = 0. Hence it follows that, in this case, the harmonic function
u equal to u′ belongs to the class Hs

∆(Ω) and, in particular, to the class H
1
∆(Ω) = H

1(Ω). Since
the homogeneous boundary value problem (1), (2) has the unique trivial solution in the latter
space [2, 3], the proof of the theorem is complete.
Let us now proceed to the proof of the existence of a solution of the inhomogeneous boundary

value problem (1)–(3). In forthcoming considerations, we need the following assertion.

Lemma 1. Let s ≥ 0 be even, and let a function f ∈ M s (SR) vanish near the circular part of
the boundary of the sector SR. Then there exists a function u ∈ M s+2 (SR) satisfying the Poisson
equation

∆u = f(x) (4)

and the homogeneous boundary condition

σu|O = 0 (5)

at the corner point and such that f �→ u is a continuous mapping of the space M s (SR) into the
space M s+2 (SR).

Proof. Let f ∈ T̊∞ (SR). This implies the expansion f(r, ϕ) =
∑K

k=0 fk(r)Yk, where K = K(f)
is a positive integer and the functions r−λkfk belong to the space C̊∞

ν (0, R). The desired solution
u has the form

u(r, ϕ) = −
K∑

k=0

Ykr
λk

R̄∫
r

t1−2λk

t∫
0

τλk+1fk(τ)dτ dt. (6)

By Lemma 1 in [1], the functions in the space C̊∞
ν (0, R) have at most a power-law singularity

of order −2ν at zero. Hence it follows that the integral is O (r2−2ν) near r = 0; consequently,
condition (5) is satisfied. The verification of condition (4) can be performed by straightforward
differentiation in (6). Let us show that the mapping f �→ u given by (6) is continuous in the
corresponding topologies.

By uk we denote the function uk = −rλk
∫ R̄

r
t−1−2λk

∫ t

0
τλk+1fk(τ)dτ dt. We expand it into two

terms,

uk = −rλk

R̄∫
r

t−1−2λk

t∫
0

τλk+1χR/4fk(τ)dτ dt

− rλk

R̄∫
r

t−1−2λk

t∫
0

τλk+1
(
1− χR/4

)
fk(τ)dτ dt

def= u1
k + u

2
k,
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introduce the functions u1 =
∑K

k=0 u
1
kYk and u2 =

∑K

k=0 u
2
kYk, and separately estimate each of

them, starting from u1. Consider the expression

Bν

(
χRr

−λku1
k

)
= D2

(
χRr

−λku1
k

)
+
2ν + 1
r

D
(
χRr

−λku1
k

)
.

Here and throughout the following, ν is understood as λk. By the Leibniz formula, we obtain

Bν

(
χRr

−λku1
k

)
= D2χRr

−λku1
k +DχRD

(
r−λku1

k

)
+DχRD

(
r−λku1

k

)
+ χRD

2
(
r−λku1

k

)
+
2ν + 1
r

(
DχRr

−λku1
k + χRD

(
r−λku1

k

))
= χRBν

(
r−λku1

k

)
+ 2

∂χR

∂r

∂
(
r−λku1

k

)
∂r

+ r−λku1
kBνχR.

(7)

For the first term in the last relation, we have the formula

χRBν

(
r−λku1

k

)
= χRr

−λkχR/4fk(r) = χR/4r
−λkfk(r),

since χRχR/4 = χR/4.
By taking into account the relations DχR(r) = 0 for 0 ≤ r ≤ R and χR/4(r) = 0 for r ≥ R/2,

for the second term, we obtain the expression

2
∂χR

∂r

∂
(
r−λku1

k

)
∂r

= 2r−1−2λk
∂χR

∂r

R/2∫
0

τλk+1χR/4fkdτ. (8)

In the same way, for the third term, we obtain the representation

r−λku1
kBνχR = − (BνχR)

R̄∫
r

t−1−2λkdt

R/2∫
0

τλk+1χR/4fkdτ

= (BνχR)
1
2λk

(
R̄−2λk − r−2λk

) R/2∫
0

τλk+1χR/4fkdτ.

(9)

By substituting all these representations into (7), we obtain

Bν

(
χRr

−λku1
k

)
= χR/4r

−λkfk +
2
r

∂χR

∂r

R/2∫
0

τλk+1χR/4fkdτ

− (BνχR)
(
R̄−2λk − r−2λk

) R/2∫
0

τλk+1χR/4fkdτ

= χR/4r
−λkfk +

R/2∫
0

τλk+1χR/4fkdτ

(
2
r

∂χR

∂r
− 1
2λk

BνχR

(
R̄−2λk − r−2λk

))
.

(10)

By taking into account the relation

2
r

∂χR

∂r
− 1
2ν
BνχR = − 1

2ν
B−νχR,
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we rewrite the expression (10) in the form

Bν

(
χRr

−λku1
k

)
= χR/4r

−λkfk −
1
2λk

B−νχR

(
R̄−2λk − r−2λk

) R/2∫
0

τλk+1χR/4fkdτ.

By virtue of the formula ‖f‖2
s,R =

∑K

k=0

∥∥r−λkχRfk

∥∥2

H̊s
ν(0,2R)

+ ‖(1− χR) f‖2

Hs
∆(Ω), one can estimate

the function u1 as∥∥u1
∥∥2

s+2,R
=
∑

k

∥∥r−λkχRu
1
k

∥∥2

H̊s+2
ν (0,2R)

+
∥∥(1− χR) u1

k

∥∥2

Hs+2
∆ (Ω)

≤ 3
∑

k

∥∥χR/4r
−λkfk

∥∥2

H̊s
ν(0,2R)

+ 3
∑

k

1
(2λk)

2

(
R̄−2λk ‖B−νχR‖2

H̊s
ν(0,2R)

R/2∫
0

τλk+1χR/4fkdτ

+
∥∥r−2λkB−νχR

∥∥2

H̊s
ν(0,2R)

R/2∫
0

τλk+1χR/4fkdτ

)
+
∥∥(1− χR) u1

k

∥∥2

Hs
∆(SR̄)

def= 3J1 + 3J2 +
∥∥(1− χR)u1

k

∥∥2

Hs
∆(SR̄)

.

(11)

Let us estimate each term on the right-hand side in the last formula. The term J1 admits an
estimate of the form J1 ≤ ‖f‖2

s,R/4. We set ω(r) = r−λkχR/4fk and consider the integral in the
second term:

Wν(ω,R) =

R/2∫
0

τ 2λk+1ω(r)dτ =

R/2∫
0

τ 2λk+1P 1/2−ν
ν S ν−1/2

ν ω(r)dτ,

where P 1/2−ν
ν and S ν−1/2

ν are transformation operators.
Since r−λkfk ∈ C̊∞

ν (0, R), it follows that the functions S ν−1/2
ν ω = S ν−1/2

ν

(
χRr

−λkfk

)
belong

to the space C̊∞[0, R). Let ω̃ = S ν−1/2
ν ω and ν < N + 1/2, where N is a positive integer. Then,

by the definition of the transformation operators, we have

P 1/2−ν
ν ω̃(τ) =

(−1)N × 2−N
√
πτ 2(N−λk)

Γ(ν + 1)Γ(N − ν + 1/2)

(
∂

∂τ

1
τ

)N
∞∫

τ

τ 2λk
(
t2 − τ 2

)N−λk−1/2
t−2N ω̃(t)dt.

Hence we obtain an expression of the form

Wν(ω,R) =

R/2∫
0

τ 2λk+1P 1/2−ν
ν Sν−1/2

ν ω dτ

=
(−1)N × 2−N

√
π

Γ(ν + 1)Γ(N − ν + 1/2)

R/2∫
0

τ 2λk+1

(
∂

∂τ

1
τ

)N

×
∞∫

τ

τ 2λk
(
t2 − τ 2

)N−λk−1/2
t−2N ω̃(t)dt dτ

=
Γ(N + 3/2)

√
π

Γ(ν + 1)Γ(N − ν + 1/2)Γ(3/2)

R/2∫
0

ω̃(t)t−2N

t∫
0

τ 2λk+1
(
t2 − τ 2

)N−λk−1/2
dt dτ.
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The inner integral in the last expression can be evaluated via the Euler functions:
t∫

0

τ 2λk+1
(
t2 − τ 2

)N−λk−1/2
dτ = t2N+1Γ(ν + 1)Γ (N − λk + 1/2)

2Γ(N + 3/2)
;

consequently,

Wν(ω,R) =

R/2∫
0

tω̃(t)dt =

R/2∫
0

tSν−1/2
ν ω dt.

Further, since Sν = I1/2−νSν−1/2
ν , where Iµ is the Liouville operator, it follows from the preceding

formula that

Wν =

R/2∫
0

tIs+ν−1/2I−sSνω(t)dt =
1

Γ(s+ ν − 1/2)

R/2∫
0

t

R/2∫
t

(τ − t)s+λk−3/2I−sSνω(τ)dτ dt

=
1

Γ(s+ ν − 1/2)

R/2∫
0

(
I−sSνω(τ)

) τ∫
0

t(τ − t)s+λk−3/2dt dτ,

and since
τ∫

0

t(τ − t)s+λk−3/2dt = τ s+λk+1/2Γ(s+ ν − 1/2)
Γ(s+ ν + 3/2)

,

we have

Wν =
1

Γ(s+ ν + 3/2)

R/2∫
0

τ s+λk+1/2I−sSνω(τ)dτ.

By the Cauchy–Schwarz inequality, we obtain an estimate of the form

|Wν | ≤
1

Γ(s+ ν + 3/2)


 R/2∫

0

t2s+2λk+1dt




1/2

‖DsSνω‖L2(0,R/2)

=
Rs+ν+1

2s+λk+3/2(s+ ν + 1)1/2Γ(s+ ν + 3/2)
‖Sνω‖H̊s

ν(0,R/2)

=
Rs+ν+1Γ(ν + 1)

2s+1(s+ ν + 1)1/2Γ(s+ ν + 3/2)
‖ω‖H̊s

ν (0,R/2);

i.e., we have
|Wν | ≤ c(s,R)Rν(ν + 1)−1−s‖ω‖H̊s

ν (0,R/2).

By returning to the original notation, we write out the final estimate of the integral Wν :

|Wν(ω,R)| ≤ c(s,R)Rλk (λk + 1)
−1−s ∥∥χR/4r

−λkfk

∥∥
H̊s

ν(0,R/2)
. (12)

It follows from [4, p. 854] that

‖BνχR‖2

H̊s
ν(0,2R) ≤ 2 ‖BνχR‖2

H̊s
ν,+(0,2R) = 2

2R∫
0

∣∣B1+s/2
ν χR

∣∣2 r2λk+1dr

= 2R2λk+1−s

2R∫
0

∣∣B1+s/2
ν χR

∣∣2 t2λk+1dt = c(s, k) (λk + 1)
s+1 (2R)2λk ,
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6 KATRAKHOV, KISELEVSKAYA

and we have the inequality∥∥r−2νBνχR

∥∥2

H̊s
ν(0,2R)

≤ c(s,R)R−2λk (λk + 1)
s+1
.

Therefore, by (12), the last two inequalities lead to the following estimate for the second term
in (11):

I2 ≤ c
∑

k

(
R2λk

(λk + 1)
4+2s

(
λk + 1
R2λk

+
(2R)2λk

R̄4λk
(λk + 1)

s+1

)∥∥∥χR/4

rλk
fk

∥∥∥2

H̊s
ν(0,R/2)

)

≤ c
∑

k

∥∥∥χR/4

rλk
fk

∥∥∥2

H̊s
ν(0,R/2)

≤ c‖f‖2
s,R/4,

since 2R < R̄. Here c > 0 is independent of f .
To complete the estimate of the function u1, it remains to consider the last term in (11). Since

χR̄(r) ≡ 1 in SR̄, we have ∥∥(1− χR) u1
∥∥

H(SR̄)
≤
∥∥χR (1− χR)u1

∥∥
H(S2R̄)

.

By analogy with (7)–(10), we obtain the formula

Bν

(
χR (1− χR) r−λku1

k

)
=

1
2λk

(
Bν (χR (1− χR))

R̄2λk
− B−ν (χR (1− χR))

r2λk

) R/2∫
0

τλk+1χR/4fkdτ.

Consequently,∥∥χR̄ (1− χR)u1
∥∥2

H̊s+2(S2R̄)

≤
∑

k

|Wν |2

(2ν)2


∥∥∥∥B1+s/2

ν (χR̄ (1− χR))
R̄4ν

∥∥∥∥
L2,ν

+

∥∥∥∥∥B
1+s/2
−ν (χR̄ (1− χR))

r2ν

∥∥∥∥∥
L2,ν


 .

The norms in the last sum satisfy the estimate

∥∥χR (1− χR)u1
∥∥2

H̊s+2
∆ (SR̄)

≤ c
∑

k

1
(λk + 1)

s+1

∥∥∥χR/4

rλk
fk

∥∥∥2

H̊ν(0,R/2)
≤ c‖f‖2

s,R/4;

therefore, ∥∥(1− χR)u1
∥∥

H(SR̄)
≤ c‖f‖s,R/4.

We have thereby estimated the function u1 as ‖u1‖s,R/4 ≤ c‖f‖s,R/4, where c > 0 is a constant
independent of f .
Now consider the function u2. It belongs to the space Hs+2

∆ (SR̄) and is a solution of the boundary
value problem

∆u2 =
(
1− χR/4

)
f, u2

∣∣
∂(SR̄)

= 0.

Since f ∈ M s (SR̄), it follows that
(
1− χR/4

)
belongs to Hs

∆ (SR̄). The solution of this boundary
value problem is unique and admits the estimate (see the proof of the main theorem below)∥∥u2

∥∥
Hs+2

∆ (SR)
≤ c

∥∥(1− χR/4

)
f
∥∥

Hs
∆(SR)

.

Now from the definition of the norms ‖ · ‖s,R, we have ‖u2‖s+2,R ≤ c‖f‖s,R, where c is a constant
independent of f .
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We have thereby obtained estimates for the functions u1 and u2, i.e., for the function u = u1+u2

as well. Consequently, for any R ∈
(
0, R̄/2

)
and s ≥ 0, there exists a constant c > 0 such that

‖u‖s+2,R ≤ c‖f‖s,R/4 for any function f ∈ T∞ (SR̄).
To complete the proof, we perform the passage to the limit. Let f ∈ M s (SR̄), and let this

function satisfy the assumptions of the lemma. Then there exists a function sequence fm ∈ T∞ (SR̄)
converging to f in the topology of this space. For each function fm, we define the functions um by
formula (6). Then

∆um = fm m→∞→ f. (13)

As was proved above, we have ‖um‖s+2,R ≤ c ‖fm‖s,R; therefore, f
m �→ um is a continuous mapping

of the space M s into M s+2. Then um is a Cauchy sequence in M s+2. Since the space M s+2 is
complete, it follows that there exists a function u ∈ M s+2 that is the limit of the sequence um in
the topology of this space.
The operator ∆ is a continuous mapping of the space M s+2 into M s. Since the space M s+2 is

continuously embedded in M s, we have ‖g‖s,R ≤ c‖g‖s+2,R for any function g ∈M s. In particular,
for the function g, one can take ∆um ∈M s; then

‖∆um‖s,R ≤ c ‖∆um‖s+2,R ,

and this implies that the operator ∆ is a continuous mapping of M s+2 into M s. Therefore,
∆um → ∆u in the sense of the space M s. Then relation (13) implies that ∆u = f .
Finally, by the direct theorem on σ-traces, the passage from a function to its σ-trace is a

continuous operation; therefore,
lim

m→∞
σum

∣∣∣
O
= σu|O,

and since σum|O = 0, we have σu|O = 0 for the σ-trace. The proof of the lemma is complete.

3. EXISTENCE OF A SOLUTION OF THE BOUNDARY VALUE PROBLEM

Let us prove the solvability of problem (1)–(3). By G′ we denote the part of the boundary of
SR that consists of two rectilinear segments, the corner sides. Let v1 ∈ M s+2(Ω) be the solution
of the boundary value problem

∆v1 = 0, x ∈ S∞, v1
∣∣
G′ = 0, σ v1

∣∣
O
= Ψ

represented in Theorem 6 in [1], and let v2 ∈M s+2(Ω) be a solution of the boundary value problem

∆v2 = χR0f, x ∈ S2R̄, v2
∣∣
G′ = 0, σv2

∣∣
O
= 0

constructed in Lemma 1.
Now let us analyze the solvability of the boundary value problem

∆v3 = (1− χR0) f, x ∈ Ω, v3
∣∣
G
= −

(
v1 + v2

)∣∣
G
, σv3

∣∣
O
= 0. (14)

Note that, as was proved above, the function v1+v2 belongs to the space M s+2(Ω), whose elements
have the same structure as the functions of the class Hs at some distance from the origin; therefore,
the trace (v1 + v2)|G exists and belongs to the space Hs+3/2(G). Here we also use the fact that this
trace vanishes on the part of the boundary G lying in some neighborhood of the origin. This fact,
together with the general theory of elliptic boundary value problems (e.g., see [2, 3]), permits one to
prove the existence of a solution of the boundary value problem (14) in the class H1(Ω) = H1

∆(Ω),
which, by smoothness increasing theorems (e.g., see [5]), locally (at some distance from the origin)
belongs to the class Hs+2, but, for some values of angles, it does not necessarily belong even to the
space H2(Ω). In addition, this solution belongs to the space Hs+2

∆ (Ω), since

∆(s+2)/2v3 = ∆s/2 (1− χR0) f,

i.e., v3 ∈ Hs+2
∆ (Ω) ⊂M s+2(Ω).
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8 KATRAKHOV, KISELEVSKAYA

Then the function v = v1+v2+v3 ∈M s+2(Ω) is a solution of the boundary value problem (1)–(3).
The proof of the existence of a solution is thereby complete.
The uniqueness of the solution of the boundary value problem (1)–(3) was justified in Theorem 1.

The preceding results also imply the continuity of the resolving operatorA . The proof of Theorem 2
is complete.
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