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The present paper is a continuation of [1] and uses the notation and definitions introduced
there. In [1], the authors also presented the properties of transformation operators, studied new
function spaces, introduced the notion of o-trace, and proved the direct and inverse trace theorems.
In the present paper, we pose a singular boundary value problem in a domain with a single corner
(singular) point. We prove some auxiliary results. The main result is given by the theorem on the
unique solvability of the corresponding boundary value problem.

1. MAIN RESULT

In the Euclidean two-dimensional space R?, we introduce polar coordinates r > 0, 0 < ¢ < 27
centered at the origin O. By S we denote a circular sector of radius R centered at O with opening
angle ® € (0, 27].

Consider a bounded domain € C R?. Suppose that the origin O belongs to Q. We assume that
for some Ry > 0, the intersection of €2 with the disk of radius 2R, centered at O coincides with Ssg, .
Furthermore, we assume that the boundary of € is '™ everywhere except for the point O, which
is assumed to be a corner point. Let Go = 0Q\O.

Consider the boundary value problem

Au = f(z), x € Q, (1)
ulr, =0, x € Go, (2)
oulo =¥(p), ¢e[0,] (3)

This problem generates the operator

o 0 ur— Au={Au,oulo}.

We equip the space .#° = M?® x A[0,®] with the direct product topology. It follows from the
preceding results that the operator A is a continuous mapping of the space M**? into the space _Z°,
where s > 0 is even.

The following assertion is the main result of the present paper.

Theorem 1. Let s > 0 be even, and let f € M*(Q2) and ¥ € A0, ®]. Then there exists a unique
solution u of the above-posed boundary value problem in the space M*2(Q). Moreover, f: ¥ — u
is a continuous mapping of the space .#* into the space MT%(Q).

Proof. The proof of the theorem consists of several stages. First, let us prove the following
assertion.
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2. AUXILIARY RESULTS

Theorem 2 (the uniqueness theorem). Let s > 0. Then the homogeneous boundary value
problem (1)—(3) has at most one solution in the space M*T2(Q).

Proof. Let a solution u of the homogeneous boundary value problem belong to the space
M**2(€Q). The harmonic function u admits the expansion

— Z (axr™ + bpr™™) Yi(p) = o +u”
k=1

for each r € (0,2Ry). Since the o-trace of u is equal to the o-trace of u”, it follows that both of

them vanish, i.e.,
0= O'U”’O = Zkak7
k

therefore, all b, are zero, and so u” = 0. Hence it follows that, in this case, the harmonic function
u equal to v’ belongs to the class H3(Q) and, in particular, to the class Hx(Q) = H*(Q2). Since
the homogeneous boundary value problem (1), (2) has the unique trivial solution in the latter
space [2, 3|, the proof of the theorem is complete.

Let us now proceed to the proof of the existence of a solution of the inhomogeneous boundary
value problem (1)—(3). In forthcoming considerations, we need the following assertion.

Lemma 1. Let s > 0 be even, and let a function f € M?® (Sg) vanish near the circular part of
the boundary of the sector Sg. Then there exists a function uw € M*T2 (Sg) satisfying the Poisson

equation
Au= f(x) (4)

and the homogeneous boundary condition
oulo =0 (5)

at the corner point and such that f +— w is a continuous mapping of the space M* (Sg) into the
space M**? (Sg).

Proof. Let f € T (Sz). This implies the expansion f(r, @) = Zk o Jr(r)Y), where K = K(f)

is a positive integer and the functions r~** f; belong to the space C’S" (0, R). The desired solution

u has the form )
X R t
- Z Y- /tl_%’“ /T’\’“ka(T)dT dt. (6)
k=0 r 0

By Lemma 1 in [1], the functions in the space C2°(0, R) have at most a power-law singularity
of order —2v at zero. Hence it follows that the integral is O (r?~2") near r = 0; consequently,
condition (5) is satisfied. The verification of condition (4) can be performed by straightforward
differentiation in (6). Let us show that the mapping f +— wu given by (6) is continuous in the
corresponding topologies.

By u;, we denote the function u, = —r« fTR t=1=2M fot TAFLf (7)dT dt. We expand it into two
terms,

R
/t 1= 2’\’“/ A’“Jrl)(}?,/4fk(7)d7dt

_ ,,aAk t*l*Q)\k /TAIC+1 (1 _ XR/4) fk( )dT dt dif }C—i—ui’

T 0
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introduce the functions u' = Y1 ulY; and u? = S5 ulY, and separately estimate each of
them, starting from u'. Consider the expression

B, (xar—ul) = D (xar—ul) + 2211

D (XRT_Akui) .
Here and throughout the following, v is understood as A;. By the Leibniz formula, we obtain
B, (XRT_)\kui) = D2XRT_/\’”'U]1€ + DxrD (T_A’“u,lf) + DxrD (r‘“‘ui)
2v+1
+xrD* (r ) + (Dxar™uy, + xaD () (7)

Oxr 0 (T_Ak ullc)
or or

+ T*A’“u}cBVXR.
For the first term in the last relation, we have the formula

XeBy (1 Muy) = xar M Xr/afe(r) = Xrpar ™ fi(r),

since XrXRr/4 = XR/4-
By taking into account the relations Dxg(r) = 0 for 0 < r < R and xpga(r) = 0 for r > R/2,
for the second term, we obtain the expression

R/2

6XR 9 ( )\kullc) 1o, OXR / A
=9 k k1 .
(% or r or T XR/4fde (8)

0

In the same way, for the third term, we obtain the representation

R R/2
rurB,xr = — (B,Xr /t_1 2A’&dt/ +1XR/4fde
/2 (9)
= (B,XR) =— 2)\k (R—%k _ —2/\k) /TAk+1XR/4fde.

0

By substituting all these representations into (7), we obtain

R/2
20
B, (xrr—Mug) = xgar " fi + —ﬁ T pa frdT
0
R/2
~ (B (B2 =) [ s (10)
0
R/2
2 8XR 1 —
— — Ak Ar+1 d = o R72Ak _ —2Xg .
Xr/ar™ F fr + / T Xr/afrdT (T—aT 2 VXR( r ))
0
By taking into account the relation
2 6XR 1

1
—Ta_ _Bu - __B—l/ )
r Or 2u XR v XR
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we rewrite the expression (10) in the form
R/2

_ _ 1 = _

B, (XRT Akuzlg) = XR/4T )\kfk - KB—VXR (R e 2/\’“) / TAHlXR/szde-
’ 0

By virtue of the formula || f|2 = S, Hr*’\kXRkaZS(O omy T 11— XR) f”?{g(mv one can estimate

the function u' as

j+2,R = Z |‘T7AkXRullc|‘25+2(072R) + H(l - XR) ui“i{Z*?(Q)

k
<3 [ el o m
k

'

e

R/2

2
H5(0,2R) / X rya fodT (11)
0

1 _
+3) —— R [B_,xzl
Zk:(QAkf(

R/2
2

Ar 2
H3(0.2R) /T kHXR/“f’“dT) {11 = x) u’lf“HZ(Sﬁ)
0

+ HT_Q/\kauXR|

def 12
= 3J1+ 30+ [[ (1= xR) il gy s,y -
Let us estimate each term on the right-hand side in the last formula. The term J; admits an
estimate of the form J, < |[f|2 5,,. We set w(r) = r~*Xg/afx and consider the integral in the

second term:

R/2 R/2
W, (w, R) = / T H(r)dr = / TN g2y G120, (1)
0 0

where .Z7/27" and .%~1/2 are transformation operators.
Since 7 f, € C=°(0, R), it follows that the functions .7~ /2w = .7*~Y/2 (xzr~> f,,) belong

to the space CQ’OO[O, R). Let & = %" Y%w and v < N + 1/2, where N is a positive integer. Then,
by the definition of the transformation operators, we have

—DN x 27N N -x) g 1\ Y ki N-Ap—1/2
PU2v5 () — ( o1l / 2 (42 _ 2 s —2N ~ .

Hence we obtain an expression of the form
R/2
W, (w, R) = / U S

0
R/2

= r<u(+_3;<zva—_Zf1/2) A %é)N

0
[e'e)

x /r”k (22 — 2V N g ()t dr

T

R/2 ¢

_ (N +3/2)y/m SN [ a2 _ 2 N=Ap—-1/2 -
= TG/ / ()t O/ (t ) dt dr.

v+ 1IN —v+1/2

0
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The inner integral in the last expression can be evaluated via the Euler functions:

t

/TQAk+1 (t2 . Tz)N—/\k—l/Q dr — t2N+1F(V + DI (N — A + 1/2)_

2I'(N + 3/2) ’
0
consequently,
R/2 R/2
W,(w,R) = /tcb(t)dt: /tsg—l/%dt.
0 0

Further, since S, = I'/27¥S%~1/2 where I* is the Liouville operator, it follows from the preceding
formula that

R/2 R/2 R/2

1
, = | TS w(t)dt = /t/ — )t g dr dt
W, / S,w(t) TGtrv—12) (t—1) S,w(T)dr
0 0ot

R/2

1
e I s+ Ae—3/2
D(s+v—1/2) / (I Sw(7)) /t(T t) dtdr,
0 0

and since T

/ Hor — £ -3i2gy  pencnp LTV = 1/2)

[(s+v+3/2)

0

we have
R/2
1
W, =————— /TS+)\k+1/2ISSVw(T)dT.

I'(s+v+3/2) /

By the Cauchy—Schwarz inequality, we obtain an estimate of the form

RJ2 1/2
1 . ,
W< oo [t 108 0
0
Rs+u+1

= 25+Ak+3/2(8 + v+ 1)1/2F(5 + v+ 3/2) ‘|Syw‘|IfI§(O,R/2)
B R HT (v + 1) ol '
2 (s v 4 1)V (s + v+ 3/2) Hy(0,R/2)

i.e., we have .
(W] < (s, R)R" (v + 1) " |wll 7 0,r/2)-

By returning to the original notation, we write out the final estimate of the integral W, :
—1—s _
W, R)] < e, RYR O+ 1) [xmsr ™ fell .- (12

It follows from [4, p. 854] that

2R
2 2 s 2
HBVXRHIZI;'(O,QR) <2 HBVXRHIEI;JF(O,QR) = 2/ ‘BiJr /2XR| rtdr
0

2R
Y e / |Bi+s/2XR|2 P22 gy — C(S, k?) ()\k + 1)S+1 (2R)2)\k’
0
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and we have the inequality
—9op 2 _ s+1
|72 BVXRHI?g(o,zR) <ec(s, R) R (N +1)" .

Therefore, by (12), the last two inequalities lead to the following estimate for the second term

in (11):
R AA1 (2R)" +1\ || XE/4 . |2
I, < - A 1)° H
T Czk: <()\k +1)t < TRV T e +1) Ak Ji f3(0,R/2)
XRr/4 , ||? )
< 2[5 < A
SO vl PR

since 2R < R. Here ¢ > 0 is independent of f.
To complete the estimate of the function ', it remains to consider the last term in (11). Since

Xz(r) =1in Si, we have
1 1
(1 = xr)u HH(SR) < |xr (1= xr)u HH(sm) :
By analogy with (7)—(10), we obtain the formula

/2

yr M) = 1 (BV (xr(1—xr)) B-,(xr(l —m))) 7

Ar+1
RQ/\k 742)% T XR/4fde-

Consequently,
HX}:{ (1 - XR) u1H25+2(52R)

B (xa (1 —xg))

23 ”;V;V)L ” B xal=xa)|

- D4y 2v
k ( R L2 " La
The norms in the last sum satisfy the estimate
e (1= x)w s < € 0 e [|EE2 | el
AR = T e (O + 1) e Ml g T

therefore,
(1= xr) || 5,y < el fllsrya

We have thereby estimated the function u' as [[u'|l, 5, < ¢l flls,r/4, Where ¢ > 0 is a constant
independent of f.
Now consider the function u?. It belongs to the space Hy" (Sz) and is a solution of the boundary

value problem
AUQZ (1_XR/4) f7 u2‘8(SR) =0.

Since f € M*®(Sy), it follows that (1 — XR/4) belongs to HX (Sz). The solution of this boundary
value problem is unique and admits the estimate (see the proof of the main theorem below)

2
H“ | H5(SR) <c H (1= Xry4) fHHZ(SR) :
Now from the definition of the norms || - [|s z, we have |[u?(|,,, » < c|[fl|s,z, where ¢ is a constant

independent of f.
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We have thereby obtained estimates for the functions u!* and u?, i.e., for the function u = u! +u?
as well. Consequently, for any R € (O,R/ 2) and s > 0, there exists a constant ¢ > 0 such that
llulls+2,r < || flls,r/a for any function f € T (Sg).

To complete the proof, we perform the passage to the limit. Let f € M?®(Sz), and let this
function satisfy the assumptions of the lemma. Then there exists a function sequence f™ € T (Sz)

converging to f in the topology of this space. For each function f, we define the functions u™ by
formula (6). Then

Ay™ = fm ST f (13)
As was proved above, we have |[u™||,,, » < c||f™]|, ; therefore, f™ — u™ is a continuous mapping

of the space M*® into M**2. Then u™ is a Cauchy sequence in M**2. Since the space M2 is
complete, it follows that there exists a function u € M**2 that is the limit of the sequence u™ in
the topology of this space.

The operator A is a continuous mapping of the space M**2 into M*. Since the space M**? is
continuously embedded in M*, we have ||g|/s.zr < ¢[|g]/s+2.r for any function g € M*. In particular,
for the function g, one can take Au™ € M?; then

[AW™[], 5 < clAu™ || s 5

and this implies that the operator A is a continuous mapping of M**2 into M?*. Therefore,
Au™ — Aw in the sense of the space M*. Then relation (13) implies that Au = f.

Finally, by the direct theorem on o-traces, the passage from a function to its o-trace is a
continuous operation; therefore,

lim ou™ o= oulo,

m— 00

and since ou™|, = 0, we have ou|o = 0 for the o-trace. The proof of the lemma is complete.

3. EXISTENCE OF A SOLUTION OF THE BOUNDARY VALUE PROBLEM

Let us prove the solvability of problem (1)-(3). By G’ we denote the part of the boundary of
Sk that consists of two rectilinear segments, the corner sides. Let v' € M*T2(Q) be the solution
of the boundary value problem

Avt =0, x € Sy, vl

o =0, O'UI|O:\I’

represented in Theorem 6 in [1], and let v? € M*T2(Q) be a solution of the boundary value problem

Av? = xg, f, x € Sap, 1)2|G, =0, 01}2‘0:0

constructed in Lemma 1.
Now let us analyze the solvability of the boundary value problem

Av® = (1—xgr,) [, x € €, UB|G:—(1}1+02)|G, 003|O:O. (14)
Note that, as was proved above, the function v! +v? belongs to the space M*T2(Q)), whose elements
have the same structure as the functions of the class H*® at some distance from the origin; therefore,
the trace (v!+ v?)|, exists and belongs to the space H*+*/?(G). Here we also use the fact that this
trace vanishes on the part of the boundary G lying in some neighborhood of the origin. This fact,
together with the general theory of elliptic boundary value problems (e.g., see [2, 3]), permits one to
prove the existence of a solution of the boundary value problem (14) in the class H'(2) = HA(Q),
which, by smoothness increasing theorems (e.g., see [5]), locally (at some distance from the origin)
belongs to the class H*2, but, for some values of angles, it does not necessarily belong even to the
space H?(2). In addition, this solution belongs to the space H5(f2), since

NGRS = A (1= ) f,
ie., v’ e HP*(Q) C M*2(Q).
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Then the function v = v'+v2+v? € M*T2(Q) is a solution of the boundary value problem (1)—(3).
The proof of the existence of a solution is thereby complete.

The uniqueness of the solution of the boundary value problem (1)—(3) was justified in Theorem 1.
The preceding results also imply the continuity of the resolving operator .o7. The proof of Theorem 2
is complete.
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