AXIOMATIZABILITY OF FREE S-POSETS

M. A. Pervukhin and A. A. Stepanova

UDC 510.67+512.56

ABSTRACT. In this work, we investigate the partially ordered monoids S over which the class of free (over a poset) S-posets is axiomatizable. Similar questions for S-sets were considered in papers of V. Gould, S. Bulman-Fleming, and A. A. Stepanova.

The questions of axiomatizability of S-sets were considered in [1,6,7,14]. In [7], V. Gould obtained the description of monoids S with axiomatizable class of free S-sets. The structure of free (over a set) S-posets is similar to the structure of free S-sets, namely, free S-posets are isomorphic to the coproduct of free cyclic S-posets. Thus, the model-theoretic properties of free S-sets are easily transferred in the case of free S-posets. In particular, as we note in our work, the result of V. Gould about the axiomatizable class of free S-sets also occurs for the class of free S-posets.

In [10], the concept of an S-poset free over a poset was introduced and the structure of partially ordered monoids S with a finite number of right ideals and axiomatizable class of S-posets free over a poset were investigated. The main result of our work is a complete description of partially ordered monoids S with axiomatizable class of S-posets that are free over a poset.

The authorship of results of the given work is indivisible.

1. Some Information from Model Theory of S-Sets

Let us recall some definitions and facts from the theory of S-sets.

Let S be a monoid with identity 1. The set of the idempotents from S is denoted by E. A structure $\langle A; L_S \rangle$ of the language $L_S = \{s \mid s \in S\}$ is called a *left S-set* if for all $s, t \in S$ and $a \in A$ we have

- (1) s(ta) = (st)a;
- (2) 1a = a.

A right S-set is defined dually.

A partially ordered monoid (pomonoid) is a monoid S together with a partial order \leq on S such that if $s,t,u\in S$ and $s\leq t$, then $us\leq ut$ and $su\leq tu$. Throughout this paper, S will denote a monoid or pomonoid, which will be clear from context or specially agreed upon. Let S be a pomonoid. A structure $\langle A; L_S^{\leq} \rangle$ of the language $L_S^{\leq} = \{s \mid s \in S\} \cup \{\leq\}$ is called a *left S-poset* if for all $s,t\in S$ and $a,a'\in A$ we have

- (1) (st)a = s(ta);
- (2) 1a = a;
- (3) if $a \le a'$, then $sa \le sa'$;
- (4) if $s \leq t$, then $sa \leq ta$.

In this work, we will often use the term S-(po)set to mean a left S-(po)set. We will denote an S-set $\langle A; L_S \rangle$ and S-poset $\langle A; L_S^{\leq} \rangle$ as ${}_SA$ noting each time whether it is an S-set or an S-poset. A homomorphism of S-posets is an order-preserving homomorphism of the corresponding S-sets.

A homomorphism of S-posets is an order-preserving homomorphism of the corresponding S-sets. A substructure of an S-(po)set $_SA$ is called an $_S$ -sub(po)set of $_SA$. A finitely generated $_S$ -sub(po)set of an S-(po)set $_SA$ is an S-(po)set of the form $\bigcup_{i=1}^n {}_SSa_i$ for some $a_1, \ldots, a_n \in A$. A cyclic S-sub(po)set of an S-(po)set $_SA$ is an S-(po)set of the form $_SSa$ for some $a \in S$. A coproduct of S-(po)sets $_SA_i$ ($i \in I$)

is their disjoint union denoted $\coprod_{i\in I} SA_i$. The elements x and y of an S-(po)set SA are called connected (denoted $x \sim y$) if there exist $n \in \omega$, $a_0, \ldots, a_n \in A$, and $a_1, \ldots, a_n \in S$ such that $x = a_0, y = a_n$, and $a_i = s_i a_{i-1}$ or $a_{i-1} = s_i a_i$ for any $i, 1 \leq i \leq n$. An S-sub(po)set SA of an S-(sub)set SA is called connected if we have $x \sim y$ for any $x, y \in B$. It is easy to check that $x \sim y$ is a congruence relation on an S-(po)set SA. The classes of this relation are called connected components of the S-(po)set SA.

Theorem 1.1 ([4,8]). Every S-(po)set $_SA$ can uniquely be factorized into a coproduct of connected components.

The concepts of free, projective, and strongly flat S-(po)sets will be important for us later on. In addition to the definitions, we will recall the algebraic characterizations of these concepts.

Let \mathcal{A} and \mathcal{B} be categories and let $\mathcal{F} \colon \mathcal{A} \to \mathcal{B}$ be a functor. An object a of the category \mathcal{A} is called (left) free over an object b of the category \mathcal{B} (by the functor \mathcal{F}) (see [5]) if there exists a morphism $u \colon b \to \mathcal{F}(a)$ such that for every object a' of the category \mathcal{A} and every morphism $u' \colon b \to \mathcal{F}(a')$ there exists a unique morphism $v \colon a \to a'$ such that $u' = \mathcal{F}(v) \circ u$.

The category of sets as usual is denoted by SET and the category of poset by POSET. It is clear that the collection of left S-(po)sets with homomorphisms of left S-(po)sets forms a category, which is denoted by S-SET (S-POSET). Similarly the category SET-S of right S-(po)sets is defined.

Let \mathcal{F} be a forgetful functor from the category S-SET to the category SET. An S-set ${}_SF$ is called free over a set X if ${}_SF$ as an object of the category S-SET is free over X as an object of the category SET. If in this definition we replace the category S-SET by the category S-POSET, then we obtain the definition of an S-poset free over a set X; if furthermore we replace the category SET by the category POSET, then we obtain the definition of an S-poset free over a poset X. By $\mathcal{F}r$, $\mathcal{F}r^{<}$, and $\mathcal{F}r^{\ll}$ we denote the class of S-sets that are free over a set, the class of S-posets that are free over a poset, respectively.

Theorem 1.2 ([8,12]). An S-(po)set $_SF$ is free over a set X if and only if $_SF\cong\coprod_{x\in X}{_SSx}$, where $_SSx\cong$ $_SS$ for all $x\in X$.

Theorem 1.3 ([10]). An S-poset $_SF$ is free over a poset X if and only if $_SF\cong\coprod_{x\in X} _{SSx}$, where $_SSx$ is the copy of the S-poset $_SS$ and for all $s,t\in S$ and $x,y\in X$

$$s_x \le t_y \iff s \le t \quad and \quad x \le y,$$
 (1)

where s_x and t_y are the copies of the elements $s, t \in S$ in Sx and Sy, respectively.

An S-(po)set ${}_SA$ is said to be strongly flat if the functor $-\otimes_SA$ from the category SET-S (POSET-S) into the category SET (POSET) preserves equalizers and pullbacks. By \mathcal{SF} ($\mathcal{SF}^{<}$) we denote the class of strongly flat S-(po)sets.

Theorem 1.4 ([13]). An S-set _SA is strongly flat if and only if _SA satisfies the conditions (P) and (E):

- (P) if sx = ty for $x, y \in A$ and $s, t \in S$, then there exist $z \in A$ and $s', t' \in S$ such that x = s'z, y = t'z, and ss' = tt';
- (E) if sx = tx for $x \in A$ and $s, t \in S$, then there exist $z \in A$ and $s' \in S$ such that x = s'z and ss' = ts'.

A similar result is also true for S-posets.

Theorem 1.5 ([11]). An S-poset $_SA$ is strongly flat if and only if $_SA$ satisfies the conditions ($P^{<}$) and ($E^{<}$):

- (P[<]) if $sx \le ty$ for $x, y \in A$ and $s, t \in S$, then there exist $z \in A$ and $s', t' \in S$ such that x = s'z, y = t'z, and $ss' \le tt'$;
- (E[<]) if $sx \le tx$ for $x \in A$ and $s, t \in S$, then there exist $z \in A$ and $s' \in S$ such that x = s'z and $ss' \le ts'$.

The following proposition establishes a connection between the conditions (E) and ($E^{<}$), and it will be useful for us in the future.

Proposition 1.6 ([10]). If an S-poset SA satisfies the condition ($E^{<}$), then SA satisfies the condition ($E^{<}$).

An S-(po)set ${}_SP$ is called *projective* if for any epimorphism $\pi: {}_SA \to {}_SB$ and any homomorphism $\varphi: {}_SP \to {}_SB$ there exists a homomorphism $\psi: {}_SP \to {}_SA$ such that $\varphi = \pi \psi$. By \mathcal{P} ($\mathcal{P}^{<}$) we denote the class of projective S-(po)sets. The following theorem gives us a condition that is equivalent to the projectivity of an S-(po)set.

Theorem 1.7 ([9,12]). An S-(po)set $_SP$ is projective if and only if $_SP$ is isomorphic to a coproduct of S-(po)sets $_SSe$ ($e \in E$).

The concepts of a strongly flat S-(po)set and a projective S-(po)set are associated with the concept of a perfect (po)monoid.

An S-(po)set $_SB$ is called a cover of an S-(po)set $_SA$ if there exists an epimorphism $f \colon _SB \to _SA$ such that the restriction of f on any proper S-sub(po)set of $_SB$ is not an epimorphism. If $_SB$ is, in addition, projective, then $_SB$ is a projective cover for $_SA$. A (po)monoid S is left perfect if every S-(po)set $_SA$ has a projective cover.

Theorem 1.8 ([4,10]). For a (po) monoid S the following conditions are equivalent:

- (1) S is left perfect (po)monoid;
- (2) $\mathcal{SF} = \mathcal{P} \ (\mathcal{SF}^{<} = \mathcal{P}^{<}).$

The next theorem will be useful to us in the future.

Theorem 1.9 ([7]). If S is a left perfect monoid, $St_1 \subseteq St_0$, and the S-sets $_SSt_1$ and $_SSt_0$ are isomorphic, then $St_0 = St_1$.

Let us recall some concepts and facts from model theory and from the model theory of S-sets. Let L be a first-order language and K be a class of L-structures. A class K is called axiomatizable if there exists a set Z of axioms of the language L such that for any L-structure A

$$A \in \mathcal{K} \iff A \models \Phi \text{ for all } \Phi \in Z.$$

When we will study the axiomatizable classes below, we will frequently use the following theorem.

Theorem 1.10 ([2]). If a class K is axiomatizable, then K is closed under the formation of ultraproducts.

In [7,10], there were described (po)monoids with axiomatizable classes of free, projective, and strongly flat S-(po)sets. We will give here the results from these papers which will be used further.

For any $s, t \in S$ let us define the sets

$$r(s,t) = \{u \in S \mid su = tu\}, \quad R(s,t) = \{\langle u, v \rangle \in S \times S \mid su = tv\},$$

 $r^{<}(s,t) = \{u \in S \mid su \le tu\}, \quad R^{<}(s,t) = \{\langle u, v \rangle \in S \times S \mid su \le tv\}.$

Theorem 1.11 ([7]). The class SF is axiomatizable if and only if for any $s, t \in S$

- (1) the set r(s,t) is empty or finitely generated as a right ideal of S;
- (2) the set R(s,t) is empty or finitely generated as an S-subset of the right S-set $(S \times S)_S$.

Theorem 1.12 ([7]). The class \mathcal{P} is axiomatizable if and only if the class \mathcal{SF} is axiomatizable and the monoid S is left perfect.

For the formulation of an axiomatizability criterion of the class of free S-sets we will need some new concepts. Let $e \in E$ and $s, x \in S$. We say that s = xy is an e-good factorization on x if $y \notin wS$ for any $w \in S$ such that e = xw and Sw = Se.

Theorem 1.13 ([7]). The class $\mathcal{F}r$ is axiomatizable if and only if the class \mathcal{P} is axiomatizable and the monoid S satisfies the following condition:

for any
$$e \in E \setminus \{1\}$$
 there exists a finite set $T \subseteq S$ such that any $s \in S$ has an e -good factorization on x for some $x \in T$.

From the proof of this theorem (see [7]) we have immediately the following proposition.

Corollary 1.14. Let S be a pomonoid. If the class $\mathcal{F}r^{\ll}$ is axiomatizable, then the monoid S satisfies condition (*).

Theorem 1.15 ([10]). If any ultrapower of an S-poset $_SS$ is free over a poset, then the pomonoid S is left perfect.

Theorem 1.16 ([10]). Let any ultrapower of an S-poset S be free over a poset. Then for any $s,t \in S$

- (1) the set $r^{<}(s,t)$ is empty or finitely generated as a right ideal of S;
- (2) the set R(s,t) is empty or finitely generated as an S-subset of the right S-set $(S \times S)_S$.

We say that a monoid S has the condition of finite right solutions if

$$\forall s \in S \ \exists \ n_s \in \mathbb{N} \ \forall \ t \in S \ |\{x \in S \mid sx = t\}| \le n_s.$$

Proposition 1.17 ([7]). Let S be a monoid. If any ultrapower of the S-set $_{S}S$ is projective, then S satisfies the condition of finite right solutions.

2. Preliminary Results

In this section, we give the lemmas that will be used for the proof of our crucial result. Some of these lemmas are of interest in themselves.

Lemma 2.1. Let S be a left perfect pomonoid. Then S is a left perfect monoid.

Proof. Let S be a left perfect pomonoid. By Theorem 1.8, it is enough to prove that SF = P. Let SA be a strongly flat S-set. We define a relation \leq on A as follows:

$$sa \le tb \iff \exists u \in A \ \exists s_1, s_2, t_1, t_2 \in S \colon a = s_1 u, \ b = t_1 u, \ ss_1 u = s_2 u, \ tt_1 u = t_2 u, \ s_2 \le t_2,$$
 (2)

where $a, b \in A$, $s, t \in S$. We claim that \leq is a partial order on A. Clearly, \leq is a reflexive relation.

We will show the transitivity of the relation \leq . Let $a,b,c\in A$ and $s,t,r\in S$ satisfy $sa\leq tb\leq rc$. Then there exist $u,v\in A$, $s_1,s_2,t_1,t_2,t',t'',r_1,r_2\in S$ such that condition (2) holds and $b=t'v,c=r_1v$, $tt'v=t''v,\,rr_1v=r_2v$, and $t''\leq r_2$. Note that $t_2u=tt_1u=tb=tt'v=t''v$. Since sA is strongly flat, by Theorem 1.4 the s-set sA satisfies condition (P). Hence the equality $t_2u=t''v$ implies that $u=s_3w,\,v=r_3w$, and $t_2s_3=t''r_3$ for some $w\in A$ and $s_3,r_3\in S$. Then $a=s_1s_3w,\,c=r_1r_3w$, $ss_1s_3w=ss_1u=s_2u=s_2s_3w,\,rr_1r_3w=rr_1v=r_2v=r_2r_3w$, and $s_2s_3\leq t_2s_3=t''r_3\leq r_2r_3$. Therefore, s is a transitive relation.

To show the symmetry of the relation \leq , suppose now that $sa \leq tb \leq sa$ for $a,b \in A$ and $s,t \in S$. Thus, there exist $u,v \in A$, $s_1,s_2,t_1,t_2,t',t'',r_1,r_2 \in S$ such that condition (2) holds and b=t'v, $a=r_1v$, tt'v=t''v, $sr_1v=r_2v$, and $t'' \leq r_2$. By condition (P), from the equality $t_2u=t''v$, which is proved as above, there follows the existence of $w \in A$ and $s_3,r_3 \in S$ such that $u=s_3w$, $v=r_3w$, and $t_2s_3=t''r_3$. Note that $s_2s_3w=s_2u=ss_1u=sa=sr_1v=r_2v=r_2r_3w$. As $s_2s_3w=r_2r_3w$ and condition (E) holds, there exist $x \in A$ and $t \in S$ such that w=tx and $s_2s_3t=r_2r_3t$. Since $s_2s_3t \leq t_2s_3t=t''r_3t \leq r_2r_3t$, we have $s_2s_3t=t_2s_3t$ and $sa=s_2s_3w=s_2s_3tx=t_2s_3tx=t_2s_3w=t_2u=tt_1u=tb$. Therefore, \leq is a symmetric relation.

It is easy to check that for any $s, t, u, v \in S$ and $a, b \in A$ if $u \le v$ and $sa \le tb$, then $usa \le vtb$. Thus, sA is an S-poset.

Let us show that the S-poset sA satisfies condition (E[<]). Suppose that $sa \le ta$ for some $s, t \in S$ and $a \in A$. Then there exist $u \in A$, $s_1, s_2, t_1, t_2 \in S$ such that $a = s_1u = t_1u$, $ss_1u = s_2u$, $tt_1u = t_2u$, and

 $s_2 \leq t_2$. Since $ss_1u = s_2u$ and the S-set sA satisfies condition (E), there exist $u_1 \in A$ and $r_1 \in S$ such that $u = r_1u_1$ and $ss_1r_1 = s_2r_1$. As $tt_1r_1u_1 = tt_1u = t_2u = t_2r_1u_1$, i.e., $tt_1r_1u_1 = t_2r_1u_1$, and the S-set sA satisfies condition (E), we have that there exist $u_2 \in A$ and $r_2 \in S$ such that $u_1 = r_2u_2$ and $tt_1r_1r_2 = t_2r_1r_2$. Since $s_1r_1r_2u_2 = s_1r_1u_1 = s_1u = t_1u = t_1r_1u = t_1r_1r_2u_2 = t_1r_1r_2u_2$, i.e., $s_1r_1r_2u_2 = t_1r_1r_2u_2$, and the S-set sA satisfies condition (E), we have that there exist $u_3 \in A$ and $r_3 \in S$ such that $u_2 = r_3u_3$ and $t_1r_1r_2r_3 = s_1r_1r_2r_3$. Hence $a = s_1r_1r_2r_3u_3$ and $ss_1r_1r_2r_3 = s_2r_1r_2r_3 \leq t_2r_1r_2r_3 = tt_1r_1r_2r_3 = ts_1r_1r_2r_3$. Thus, sA satisfies condition (E[<]).

We claim that $_SA$ satisfies condition (P[<]). Let $sa \leq tb$. Then condition (2) holds. The equality $ss_1u = s_2u$ together with condition (E) implies the existence of $u_1 \in A$ and $r_1 \in S$ such that $u = r_1u_1$ and $s_2r_1 = ss_1r_1$. Since $t_2r_1u_1 = tt_1r_1u_1$ and the S-set $_SA$ satisfies condition (E), there exist $u_2 \in A$ and $r_2 \in S$ such that $u_1 = r_2u_2$ and $t_2r_1r_2 = tt_1r_1r_2$. Thus, $a = s_1r_1r_2u_2$, $b = t_1r_1r_2u_2$, and $ss_1r_1r_2 = s_2r_1r_2 \leq t_2r_1r_2 = tt_1r_1r_2$.

By Theorem 1.5, the S-poset SA is strongly flat. As S is a left perfect pomonoid then by Theorem 1.8 the S-poset SA is projective. By Theorem 1.7, we deduce that the S-set SA is isomorphic to a coproduct of the cyclic S-sets generated by idempotents, i.e., SA is a projective S-set.

Let S be a monoid. We will define an equivalence relation \mathcal{H} (see [3]) on S as follows:

$$s\mathcal{H}t \iff Ss = St \text{ and } sS = tS,$$

where $s, t \in S$. By \mathcal{H}_1 we denote the \mathcal{H} -class of the element 1. Note that the set \mathcal{H}_1 is the group of units of the monoid S.

Lemma 2.2. If S is a left perfect monoid, $t \in S$, and S = tS, then $t \in \mathcal{H}_1$.

Proof. Let $t \in S$ and S = tS. Then there exists $t' \in S$ such that tt' = 1. Note that the mapping $\varphi \colon {}_{S}S \to {}_{S}St$ defined by $\varphi(s) = st$ for any $s \in S$ is an isomorphism of S-sets. Indeed, if kt = lt, then ktt' = ltt', i.e., k = l for any $k, l \in S$. Since $St \subseteq S$, we have by Theorem 1.9 that St = S, i.e., $t \in \mathcal{H}_1$. \square

Lemma 2.3. If there are $s, t \in \mathcal{H}_1$ such that s < t, then there is an ascending chain in a pomonoid S.

Proof. Assume that $s, t \in \mathcal{H}_1$ and s < t. Since $s \in \mathcal{H}_1$, there exists an element $s^{-1} \in S$ such that s^{-1} is the inverse of s. Let us multiply the inequality s < t by s^{-1} from the right. Then $1 \le ts^{-1}$. If $1 = ts^{-1}$, then $s = ts^{-1}s = t$, a contradiction. Hence $1 < ts^{-1}$. Denote ts^{-1} by r. Then 1 < r. Let us multiply this inequality by r^i $(i \in \omega)$. We have $r^i \le r^{i+1}$. Since \mathcal{H}_1 is a group, we see that $r^i \in \mathcal{H}_1$ for any $i \in \omega$. If $r^i = r^{i+1}$ for some $i \in \omega$, then $1 = r^i(r^i)^{-1} = r^{i+1}(r^i)^{-1} = r$, that is not so. Thus, we obtain the ascending chain $1 < r < r^2 < r^3 < \dots$

Lemma 2.4. Let S be a pomonoid. If for any $s, t \in S$ the set $r^{<}(s, t)$ is either empty or finitely generated as a right ideal of S, and the set R(s, t) is either empty or finitely generated as an S-subset of the right S-set $(S \times S)_S$, then for any $s, t \in S$ the set r(s, t) is either empty or finitely generated as a right ideal of S.

Proof. Let $s, t \in S$ and $r(s, t) \neq \emptyset$. Note that $r(s, t) \subseteq r^{<}(s, t)$ and $r(s, t) \subseteq r^{<}(t, s)$. By assumption,

$$r^<(s,t) = \bigcup_{x \in X} xS, \quad r^<(t,s) = \bigcup_{y \in Y} yS$$

for some finite sets $X \subseteq S$ and $Y \subseteq S$, in particular, $sx \le tx$ and $ty \le sy$ for any $x \in X$ and $y \in Y$. Furthermore, for any $x, y \in S$ we have

$$R(x,y) = \bigcup_{\langle u,v\rangle \in W_{xy}} \langle u,v\rangle S$$

for some finite set $W_{xy} \in S \times S$, in particular, xu = yv for any $\langle u, v \rangle \subseteq W_{xy}$. For $x \in X$ by U_x we denote a set

$$\{u \in S \mid \langle u, v \rangle \in W_{xy} \text{ for some } y \in Y \text{ and } v \in S\}.$$

Let us prove the equality

$$r(s,t) = \bigcup_{x \in X} \bigcup_{u \in U_x} xuS.$$

Suppose that $w \in r(s,t)$. From $r(s,t) \subseteq r^{<}(s,t)$ and $r(s,t) \subseteq r^{<}(t,s)$ it follows that w = xw' = yw'' for some $x \in X$, $y \in Y$, w', $w'' \in S$ and $\langle w', w'' \rangle \in R(x,y)$. Hence $\langle w', w'' \rangle = \langle u, v \rangle z$ for some $\langle u, v \rangle \in W_{xy}$ and $z \in S$. Then w = xuz and $w \in \bigcup_{x \in X} \bigcup_{u \in U_x} xuS$. Thus, the inclusion

$$r(s,t) \subseteq \bigcup_{x \in X} \bigcup_{u \in U_x} xuS$$

is proved.

Let $x \in X$, $u \in U_x$, and $w \in S$. Then xu = yv for some $y \in Y$ and $v \in S$. Hence sxu = syv and txu = tyv. From $sx \le tx$ and $ty \le sy$ it follows that $sxu \le txu = tyv \le syv = sxu$, i.e., sxu = txu. Thus, sxuw = txuw and $xuw \in r(s,t)$. Thus, the inclusion

$$\bigcup_{x \in X} \bigcup_{u \in U_x} xuS \subseteq r(s, t)$$

is proved. \Box

Lemma 2.5. Let S be pomonoid. If the class $\mathcal{F}r^{\ll}$ is axiomatizable, then the class $\mathcal{F}r$ is axiomatizable.

Proof. Let the class $\mathcal{F}r^{\ll}$ be axiomatizable. By Corollary 1.14, the monoid S satisfies the condition (*). By Theorem 1.10, any ultrapower of the S-poset $_SS$ is a free S-poset over a poset. By Theorem 1.16, for any $s,t\in S$ the set $r^{<}(s,t)$ is either empty or finitely generated as a right ideal of S and the set R(s,t) is either empty or finitely generated as an S-subset of the right S-set $(S\times S)_S$. By Lemma 2.4, for any $s,t\in S$ the set r(s,t) is either empty or finitely generated as a right ideal of S. By Theorem 1.11, the class $S\mathcal{F}$ is axiomatizable. By Theorem 1.15, the pomonoid S is left perfect. Hence by Lemma 2.1 the monoid S is left perfect too. Thus, by Theorem 1.12 the class \mathcal{F} is axiomatizable. \square

3. Axiomatizability of the Class of Free S-Posets

The following theorem characterizes pomonoids S such that the class of S-posets that are free over a set is axiomatizable. The proof of this theorem is analogous to the proof of Theorem 1.13 and so we do not give it here.

Theorem 3.1. The class $\mathcal{F}r^{<}$ is axiomatizable if and only if the class $\mathcal{P}^{<}$ is axiomatizable and S satisfies the following condition:

for any
$$e \in E \setminus \{1\}$$
 there exists a finite set $T \subseteq S$ such that any $s \in S$ has an e -good factorization on x for some $x \in T$.

The crucial result of this work is Theorem 3.2, which describes pomonoids S with axiomatizable class of S-posets that are free over a poset. To formulate the following theorem we need some notations.

Let S be a pomonoid and $s, t \in S, r \in \mathcal{H}_1$. Let us define the following sets:

 $\langle x,y\rangle \in L_1(s,t) \iff x$ is the maximal element of a poset S such that $sx \leq ty$;

 $\langle x, y \rangle \in L_2(s, t) \iff x$ is the maximal element of a poset S such that sx < ty and either $sx \notin tS$ or $ty \notin sS$;

 $\langle x,y\rangle \in L_3(r) \iff y \neq ry$ and x is the maximal element of a poset S such that $x \leq ry$ and $x \leq y$.

Theorem 3.2. Let S be a pomonoid. Then the class $\mathcal{F}r^{\ll}$ is axiomatizable if and only if

- (1) the class $\mathcal{F}r$ is axiomatizable:
- (2) there are no ascending or descending chains in the poset S;
- (3) for any $\rho \in S \times S$ the set $r^{<}(\rho)$ is either empty or finitely generated as a right ideal of S;

- (4) for any $i \in \{1,2\}$ and $\rho \in S \times S$ either the set $L_i(\rho)$ is empty or there is a finite set $L_\rho^i \subseteq L_i(\rho)$ such that $L_i(\rho) \subseteq \bigcup_{\langle x,y \rangle \in L_\rho^i} \langle x,y \rangle S$;
- (5) for any $s \in \mathcal{H}_1$ either the set $L_3(s)$ is empty or there is a finite set $L_s^3 \subseteq L_3(s)$ such that $L_3(s) \subseteq \bigcup_{\langle x,y \rangle \in L_s^3} \langle x,y \rangle S$.

Proof. Necessity. Let the class $\mathcal{F}r^{\ll}$ be axiomatizable. From Lemma 2.5 there follows (1).

Let us prove (2). Assume that there exists an ascending chain $a_0 < a_1 < a_2 < \cdots < a_n < \ldots$ in the poset S. Let D be a nonprincipal ultrafilter on ω . By Theorem 1.10, ${}_{S}S^{\omega}/D \in \mathcal{F}r^{\ll}$.

We claim that $S \cdot \bar{1}/D$ is a connected component of the S-(po)set ${}_{S}S^{\omega}/D$, where $\bar{1}(j) = 1$ $(j \in \omega)$. Let $\bar{1}/D = t\bar{c}/D$ for some $t \in S$ and $\bar{c} \in S^{\omega}$. Since a free S-set is projective, by Proposition 1.17 the set $\{x \in S \mid tx = 1\}$ is finite. Hence $\bar{c}/D \in S \cdot \bar{1}/D$.

Consider $\bar{a}, \bar{a}_i \in S^{\omega}$, where $\bar{a}(j) = a_j$ and $\bar{a}_i(j) = a_i$ $(i, j \in \omega)$. It is clear that $\bar{a}_i/D < \bar{a}/D$, $\bar{a}_i/D \in S \cdot \bar{1}/D$, and $\bar{a}/D \notin S \cdot \bar{1}/D$. Since ${}_SS^{\omega}/D \in \mathcal{F}r^{\ll}$, we have that there exists an isomorphism of the connected component of the S-poset ${}_SS^{\omega}/D$, which contains the element \bar{a}/D , into the connected component ${}_SS \cdot \bar{1}/D$. Let \bar{b}/D be the image of the element \bar{a}/D under this isomorphism and $\bar{b}(j) = b \in S$ $(j \in \omega)$. Since $\bar{a}_i/D < \bar{a}/D$ $(i \in \omega)$, by Theorem 1.3 we have that $\bar{b}/D < \bar{a}/D$ and $\bar{a}_i/D < \bar{b}/D$ for any $i \in \omega$. Consequently, there exists $j \in \omega$ such that $b < a_j$ and $a_i < b$ for any $i \in \omega$, i.e., $a_i < a_j$ for any $i \in \omega$, a contradiction. In the same way, it is proved that there are no descending chains in the poset S.

From Theorem 1.16 there follows (3).

Let us prove (4). Assume that $i \in \{1, 2\}$ and there exists $\rho(s, t) \in S \times S$ such that condition (4) does not hold. Let

$$\{\langle x_{\alpha}, y_{\alpha} \rangle \in L_i(\rho) \mid \alpha < \gamma \}$$

be a set of minimum cardinality γ such that $L_i(\rho) \subseteq \bigcup_{\alpha < \gamma} \langle x_\alpha, y_\alpha \rangle S$. Since γ is infinite, it must be a limit ordinal. We can assume that

$$\langle x_{\beta}, y_{\beta} \rangle \notin \bigcup_{\alpha < \beta} \langle x_{\alpha}, y_{\alpha} \rangle S$$
 (3)

for any $\beta < \gamma$. Let D be a nonprincipal ultrafilter on γ . As the class $\mathcal{F}r^{\ll}$ is axiomatizable, we have ${}_SS^{\gamma}/D \in \mathcal{F}r^{\ll}$. Let $\bar{x}, \bar{y} \in S^{\gamma}$ such that $\bar{x}(\alpha) = x_{\alpha}, \ \bar{y}(\alpha) = y_{\alpha} \ (\alpha \in \gamma)$. Note that $s\bar{x}/D \leq t\bar{y}/D$ and for i = 2 either $s\bar{x}/D \notin tS^{\gamma}/D$ or $t\bar{y}/D \notin sS^{\gamma}/D$.

Suppose that the elements \bar{x}/D and \bar{y}/D are in different connected components of the S-poset ${}_SS^\gamma/D$. Since ${}_SS^\gamma/D \in \mathcal{F}r^\ll$, there exists an isomorphism of the connected component of the S-poset ${}_SS^\gamma/D$, which contains the element \bar{x}/D , into the connected component of the S-poset ${}_SS^\gamma/D$, which contains the element \bar{y}/D . Let \bar{x}'/D be the image of the element \bar{x}/D under this isomorphism, $\bar{x}'(\alpha) = x'_\alpha$ for any $\alpha \in \gamma$. Thus, for i=2 either $s\bar{x}'/D \notin tS^\gamma/D$ or $t\bar{y}/D \notin sS^\gamma/D$. By Theorem 1.3, $\bar{x}/D < \bar{x}'/D$ and $s\bar{x}'/D \le t\bar{y}/D$. Then $s\bar{x}/D < s\bar{x}'/D \le t\bar{y}/D$. Hence there exists $\alpha \in \gamma$ such that $x_\alpha < x'_\alpha$, $sx_\alpha < sx'_\alpha \le ty_\alpha$ and for i=2 either $sx'_\alpha \notin tS$ or $ty_\alpha \notin sS$, contradicting the condition $\langle x_\alpha, y_\alpha \rangle \in L_i(\rho)$.

$$I = \{\alpha \in \gamma \mid x_{\alpha} \leq x_{\alpha}', \ sx_{\alpha} \leq sx_{\alpha}' \leq ty_{\alpha} \text{ and for } i = 2 \text{ either } sx_{\alpha}' \notin tS \text{ or } ty_{\alpha} \notin sS\} \in D.$$

Since $\langle x_{\alpha}, y_{\alpha} \rangle \in L_{i}(\rho)$ for any $\alpha \in \gamma$, we have $I \subseteq \{\alpha < \gamma \mid x_{\alpha} = x'_{\alpha}\}$. Consequently, $\{\alpha \in \gamma \mid x_{\alpha} = x'_{\alpha}\} \in D$ and $\bar{x}/D = \bar{x}'/D$, whence k = k' and $\langle k, l \rangle \in L_{i}(\rho) \subseteq \bigcup_{\alpha \in \gamma} \langle x_{\alpha}, y_{\alpha} \rangle S$, i.e., $\langle k, l \rangle = \langle x_{\alpha}, y_{\alpha} \rangle r$

for some $\alpha \in \gamma$ and $r \in S$. On the other hand, $\langle \bar{x}/D, \bar{y}/D \rangle = \langle k, l \rangle \bar{h}/D$. Then there exists $\beta > \alpha$ such that $\langle x_{\beta}, y_{\beta} \rangle \in \langle k, l \rangle S \subseteq \langle x_{\alpha}, y_{\alpha} \rangle S$, contradicting (3).

Let us prove (5). Suppose that there exists $s \in \mathcal{H}_1$ such that (5) is not true. As in the proof of (4) for a set $L_3(s)$ we construct the set

$$\{\langle x_{\alpha}, y_{\alpha} \rangle \in L_3(s) \mid \alpha \in \gamma \}$$

such that (3) holds for all $\beta < \gamma$, D is the ultrafilter on γ , and the elements \bar{x}/D and \bar{y}/D belong to S^{γ}/D . Clearly, $\bar{x}/D \leq \bar{y}/D$, $\bar{x}/D \leq s\bar{y}/D$, and $\bar{y}/D \neq s\bar{y}/D$.

Now suppose that the elements \bar{x}/D and \bar{y}/D are in different connected components of the S-poset $_SS^\gamma/D$. Let \bar{h}/D be a generating element of the connected component of the S-poset $_SS^\gamma/D$ that contains \bar{x}/D and \bar{h}'/D be a generating element of the connected component of the S-poset $_SS^\gamma/D$ that contains \bar{y}/D ; $\bar{h}'(\alpha) = h'_\alpha$ for all $\alpha \in \gamma$. There is an isomorphism of the S-poset $_SS\bar{h}/D$ into the S-poset $_SS\bar{h}'/D$. We can assume that \bar{h}'/D is the image of the element \bar{h}/D under this isomorphism. By Theorem 1.3, $\bar{h}/D < \bar{h}'/D$, $t\bar{h}'/D \le r\bar{h}'/D = \bar{y}/D$ and $t\bar{h}'/D \le sr\bar{h}'/D = s\bar{y}/D$. Thus, $\bar{x}/D < t\bar{h}'/D \le \bar{y}/D$ and $\bar{x}/D < t\bar{h}'/D \le s\bar{y}/D$. Hence there exists $\alpha \in \gamma$ such that $x_\alpha < th'_\alpha$, $th'_\alpha \le y_\alpha$, and $th'_\alpha \le sy_\alpha$, contradicting the condition $\langle x_\alpha, y_\alpha \rangle \in L_3(s)$.

Suppose that the elements \bar{x}/D and \bar{y}/D are in the same connected component of the S-poset ${}_SS^\gamma/D$. By Theorem 1.3, there exists an isomorphism of this connected component into the S-poset ${}_SS$. Let \bar{h}/D be the inverse image of 1, \bar{x}/D be the inverse image of k, and \bar{y}/D be the inverse image of l under this isomorphism. Since $\bar{x}/D \leq \bar{y}/D$, $\bar{x}/D \leq s\bar{y}/D$, and $\bar{y}/D \neq s\bar{y}/D$, we see that $k \leq l$, $k \leq sl$, and $l \neq sl$. We will show that $\langle k, l \rangle \in L_3(s)$. Let $k \leq k'$, $k' \leq l$, and $k' \leq sl$. Let us multiply these inequalities from the right by \bar{h}/D . Then $\bar{x}'/D \leq \bar{y}/D$ and $\bar{x}'/D \leq s\bar{y}/D$, where $\bar{x}'/D = k'\bar{h}/D$. Hence $I = \{\alpha \in \gamma \mid x_\alpha \leq x'_\alpha, x'_\alpha \leq y_\alpha \text{ and } x'_\alpha \leq sy_\alpha\} \in D$. Since $\langle x_\alpha, y_\alpha \rangle \in L_3(s)$ for any $\alpha \in \gamma$ we have $I \subseteq \{\alpha < \gamma \mid x_\alpha = x'_\alpha\}$. Consequently, $\{\alpha \in \gamma \mid x_\alpha = x'_\alpha\} \in D$ and $\bar{x}/D = \bar{x}'/D$, whence k = k' and $\langle k, l \rangle \in L_3(s) \subseteq \bigcup_{\alpha \in \gamma} \langle x_\alpha, y_\alpha \rangle S$, i.e., $\langle k, l \rangle = \langle x_\alpha, y_\alpha \rangle r$ for some $\alpha \in \gamma$ and $r \in S$. On the other hand, $\langle \bar{x}/D, \bar{y}/D \rangle = \langle k, l \rangle \bar{h}/D$. We deduce that there exists $\beta > \alpha$ such that $\langle x_\alpha, y_\alpha \rangle \in \langle k, l \rangle S \subseteq \langle x_\beta, y_\beta \rangle S$, contradicting (3).

Sufficiency. Suppose that conditions (1)–(5) of the theorem hold. Let $\rho = (s,t) \in S \times S$. If $r^{<}(\rho) \neq \emptyset$, then we choose and fix a finite set \bar{r}_{ρ} of generators of $r^{<}(\rho)$. We define a sentence $\Phi_{r}(\rho)$ of L_{S}^{\leq} as follows: if $r^{<}(\rho) = \emptyset$, then

$$\Phi_r(\rho) \leftrightharpoons \forall x \neg (sx \le tx),$$

and, on the other hand, if $r^{<}(\rho) \neq \emptyset$, we put

$$\Phi_r(\rho) \leftrightharpoons \forall x \ \left(sx \le tx \to \exists z \ \bigvee_{u \in \bar{r}} x = uz \right).$$

Let

$$\alpha_{\rho}(x,y) \rightleftharpoons sx < ty \land (\neg \exists u \ (sx = tu) \lor \neg \exists u \ (ty = su)), \quad \gamma_{s}(x,y) \rightleftharpoons x \le y \land x \le sy \land y \ne sy.$$

We define a sentence $\Phi_{L_1}(\rho)$ of L_S^{\leq} as follows: if $L_1(\rho) = \emptyset$, then

$$\Phi_{L_1}(\rho) \leftrightharpoons \forall \, xy \, \neg (sx \le ty),$$

otherwise, if $L_1(\rho) \neq \emptyset$, we put

$$\Phi_{L_1}(\rho) \rightleftharpoons \forall \, xy \, \left(sx \le ty \right.$$

$$\to \exists \, z \, \left(sz \le ty \, \land \, x \le z \, \land \, \forall \, z' \, \left(z \le z' \, \land \, sz' \le ty \, \to z = z' \right) \, \land \, \exists \, w \, \bigvee_{\langle u,v \rangle \in L^1_\rho} \langle z,y \rangle = \langle u,v \rangle w \right) \right).$$

We define a sentence $\Phi_{L_2}(\rho)$ of L_S^{\leq} as follows: if $L_2(\rho) = \emptyset$, then

$$\Phi_{L_2}(\rho) \leftrightharpoons \forall xy \ \neg \alpha_{\rho}(x,y),$$

otherwise, if $L_2(\rho) \neq \emptyset$, we put

$$\begin{split} \Phi_{L_2}(\rho) & \rightleftharpoons \forall \, xy \, \left(\alpha_\rho(x,y) \right. \\ & \to \exists \, z \, \left(\alpha_\rho(z,y) \, \wedge \, x \leq z \, \wedge \, \forall \, z' \, \left(\alpha_\rho(z',y) \, \wedge \, z \leq z' \to z = z' \right) \, \wedge \, \exists \, w \, \bigvee_{\langle u,v \rangle \in L_\rho^2} \langle z,y \rangle = \langle u,v \rangle w \right) \bigg). \end{split}$$

For any element $s \in \mathcal{H}_1$ we define a sentence $\Phi_{L_3}(s)$ of L_S^{\leq} as follows: if $L_3(s) = \emptyset$, then

$$\Phi_{L_3}(s) \leftrightharpoons \forall xy \ \neg \gamma_s(x,y),$$

otherwise, if $L_3(s) \neq \emptyset$, we put

$$\Phi_{L_3}(s) \rightleftharpoons \forall xy \left(\gamma_s(x, y) \right)$$

$$\to \exists z \left(x \le z \land \gamma_s(z, y) \land \forall z' \ (z \le z' \land \gamma_s(z', y) \to z = z') \land \exists w \bigvee_{\langle u, v \rangle \in L_s^3} \langle z, y \rangle = \langle u, v \rangle w \right) \right).$$

Since the class $\mathcal{F}r$ is axiomatizable, there exists a set of axioms for this class. By $\Sigma_{\mathcal{F}r}$ we denote this set. We claim that

 $\Sigma_{\mathcal{F}r^{\ll}} = \Sigma_{\mathcal{F}r} \cup \{\Phi_r(\rho) \mid \rho \in S \times S\} \cup \{\Phi_{L_1}(\rho) \mid \rho \in S \times S\} \cup \{\Phi_{L_2} < (\rho) \mid \rho \in S \times S\} \cup \{\Phi_{L_3}(s) \mid s \in \mathcal{H}_1\}$ axiomatizes the class $\mathcal{F}r^{\ll}$.

Suppose first that $_SA \models \Sigma_{\mathcal{F}r} \ll$. By Theorem 1.1, $_SA = \coprod_{x \in X} _SA_x$, where $_SA_x$ are the connected components. Let $x \in X$. Since $_SA \models \Sigma_{\mathcal{F}r}$, we have that the S-set $_SA_x$ is isomorphic to the S-set $_SS$. Fix $h_x \in A_x$ and the mapping $\varphi \colon _SA_x \to _SS$ such that $_SA_x = _SSh_x$, $\varphi(h_x) = 1$, and φ is an isomorphism of S-sets. We claim that S-posets $_SSh_x$ and $_SS$ are isomorphic. It is enough to prove that

$$sh_x \le th_x \iff s \le t$$

for any $s,t \in S$. If $s \le t$, then by the definition of an S-poset we have $sh_x \le th_x$. Let $sh_x \le th_x$. Since $sh_x \ne th_x$, there exist $sh_x \ne th_x$ in the exist $sh_x \ne th_x$, there exists $sh_x \ne th_x$ in the exist $sh_x \ne th_x$. Consequently, $sh_x \ne th_x$ and $sh_x \ne th_x$ i.e., $sh_x \ne th_x$ i.e., $sh_x \ne th_x$ in the inequality $sh_x \ne th_x$ in the right. We have $sh_x \ne th_x$ in the S-posets $sh_x \ne th_x$ and $sh_x \ne th_x$ inequality $sh_x \ne th_x$ ine

We note that the relation \leq on the poset \mathcal{H}_1 coincides with the relation of equality. Indeed, let $z_1 < z_2$ for some $z_1, z_2 \in \mathcal{H}_1$. Then $1 < z_2 z_1^{-1}$. We denote $z_2 z_1^{-1}$ by u. Thus, we have a chain $1 < u \leq u^2 \leq u^3 \leq \ldots$ If $u^i = u^j$ for some $i, j \in \omega$, j > i, then in view of $u^i \in \mathcal{H}_1$ we have $1 = u^{j-i}$, whence 1 = u, a contradiction. Thus, there is an ascending chain in the poset S, contradicting (2).

Wed define on the set X the relation \leq in the following way:

$$x < y \iff \exists z \in \mathcal{H}_1 : h_r < zh_y$$

for all $x, y \in X$. Since on the poset \mathcal{H}_1 the relation \leq coincides with the relation of equality, we have that this relation on X is a partial order relation. We claim that SA is an S-poset free over the poset X. Let $h_1, h_2 \in \{h_x \mid x \in X\}, h_1 \neq h_2$.

Suppose that $h_1 < z_0h_2$. We will show that there exists $z \in \mathcal{H}_1$ such that $h_1 < zh_2$ and $z \le z_0$. If $z_0 \in \mathcal{H}_1$, then we suppose that $z = z_0$. Consider $z_0 \notin \mathcal{H}_1$. Since the class $\mathcal{F}r$ is axiomatizable, by Theorem 1.13 the class \mathcal{P} is axiomatizable too and by Theorem 1.12 the monoid S is left perfect. Then by Lemma 2.2 1 $\notin z_0S$. As $SA \models \Phi_{L_2}(1, z_0)$, we have that there is $z_1 \in S$ such that $z_1h_2 \le z_0h_2$, $h_1 < z_1h_2$, and $z_1 \notin z_0S$. If $z_1 \in \mathcal{H}_1$, then we suppose $z = z_1$. Otherwise by $SA \models \Phi_{L_2}(1, z_1)$ we get an

element $z_2 \in S$ such that $z_2h_2 \leq z_1h_2$, $h_1 < z_2h_2$, and $z_2 \notin z_1S$. If $z_2 \in \mathcal{H}_1$, then we suppose $z = z_2$. Otherwise we continue this process. As a result we have either an element $z_i \in \mathcal{H}_1$ such that $h_1 < z_ih_2$ or a descending chain $z_0h_2 \geq z_1h_2 \geq z_2h_2 \geq \ldots$, where in view of $z_{i+1} \notin z_iS$ $(i \in \omega)$ every inequality is strict, contradicting (2).

We claim that an element $z \in \mathcal{H}_1$ for which $h_1 < zh_2$ is unique. Assume that there exists $z' \in \mathcal{H}_1$ such that $h_1 < z'h_2$ and $z \neq z'$. Then $h_1 < z'z^{-1}(zh_2)$. Since ${}_SA \models \Phi_{L_3}(z'z^{-1})$, we have that there is $z_1 \in S$ such that $h_1 < z_1h_2$, $z_1 \leq z$, and $z_1 \leq z'$. Hence, as we noted above, there exists $z_2 \in \mathcal{H}_1$ such that $h_1 \leq z_2h_2 \leq z_1h_2$. Hence we have $z_2 \leq z$ and $z_2 \leq z'$. As z and z' are the different elements, we have that either $z_2 < z$ or $z_2 < z'$, i.e., on the poset \mathcal{H}_1 the relation \leq is not coincide with equality, a contradiction.

Let $sh_1 < th_2$. We claim that there exists a unique $z \in \mathcal{H}_1$ such that $h_1 \leq zh_2$ and $szh_2 \leq th_2$. Since $sA \models \Phi_{L_1}(s,t)$, we have that there is $z' \in S$ such that $sz'h_2 \leq th_2$ and $h_1 \leq z'h_2$. As proved above, there exists a unique $z \in \mathcal{H}_1$ such that $h_1 \leq zh_2 \leq z'h_2$. Then $szh_2 \leq sz'h_2 \leq th_2$.

Let $x \in X$,

$$X_x = \{ y \in X \mid x \text{ is comparable with } y \text{ in the ordering } \leq \},$$

and $s \in S$. We denote an element szh_y by s_y $(y \in X_x)$, where z is an element of \mathcal{H}_1 such that h_x is comparable with zh_y . As mentioned above, the element s_y is constructed uniquely. Then for all $x, y \in X$ and $s, t \in S$ condition (1) of Theorem 1.3 holds, i.e., sA is an s-poset free over the poset sA.

Finally, suppose that SA is an S-poset free over the poset X. We claim that $SA \models \Sigma_{\mathcal{F}r}$. It is clear that $SA \models \Sigma_{\mathcal{F}r}$. By Theorem 1.3, $SA = \coprod_{x \in X} SSx$, where SSx are the copies of an S-poset SS. As in

Theorem 1.3, we denote the copies of the elements $s \in S$ by s_x for all $x \in S$. Thus, condition (1) of Theorem 1.3 holds. Let $\rho = (s,t)$ and $i \in \{1,2\}$. As $sS \models \Phi_r(\rho)$, we have that $sA \models \Phi_r(\rho)$.

We claim that $_SA \models \Phi_{L_i}(\rho)$. Let $sk1_x \leq sl1_y$ and for i=2 either $sk \notin tS$ or $tl \notin sS$, where $x, y \in X$. By Theorem 1.3, $x \leq y$ and $sk \leq tl$. By assumption (2), there exists a maximal element r in the poset S such that $k \leq r$, $sr \leq tl$, and for i=2 either $sr \notin tS$ or $tl \notin sS$. Then $\langle r, l \rangle \in L_i(\rho)$ and by assumption (4) $\langle r, l \rangle = \langle x^0, y^0 \rangle w$ for some $w \in S$ and $\langle x^0, y^0 \rangle \in L^i_\rho$. Hence $k1_x \leq k1_y \leq r1_y$, $\langle r1_y, l1_y \rangle = \langle x^0, y^0 \rangle w1_y$, and for i=2 either $sr \notin tS$ or $tl \notin sS$. Consequently, $_SA \models \Phi_{L_i}(\rho)$.

Let us claim that $sA \models \Phi_{L_3}(s)$, where $s \in \mathcal{H}_1$. Let $k1_x \leq l1_y$ and $k1_x \leq sl1_y$ for some $k, l \in S$ and $x, y \in X$. By Theorem 1.3, $x \leq y$, $k \leq l$, and $k \leq sl$. By assumption (2), there exists a maximal element r in the poset S such that $k \leq r$, $r \leq l$, and $r \leq sl$. Then $\langle r, l \rangle \in L_3(s)$ and by assumption (5) $\langle r, l \rangle = \langle x^0, y^0 \rangle w$ for some $w \in S$ and $\langle x^0, y^0 \rangle \in L_s^3$. Hence $k1_x \leq k1_y \leq r1_y$, $\langle r1_y, l1_y \rangle = \langle x^0, y^0 \rangle w1_y$. Consequently, $sA \models \Phi_{L_3}(s)$.

We deduce that SA is a free S-poset over a poset X if and only if $SA \models \Sigma_{\mathcal{F}r} \ll$. Thus, the class $\mathcal{F}r^{\ll}$ is axiomatizable.

This research was partially supported by the grant of the leading science schools of Russia (grant NSh-2810.2008.1) and by RFBR (grant 09-01-00336-a).

REFERENCES

- 1. S. Bulman-Fleming and V. Gould, "Axiomatisability of weakly flat, flat and projective acts," *Commun. Algebra*, **30**, No. 11, 5575–5593 (2002).
- 2. C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam (1973).
- 3. A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Amer. Math. Soc., Providence (1961).
- 4. J. B. Fountain, "Perfect semigroups," Proc. Edinburgh Math. Soc., 20, 87–93 (1976).
- 5. P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Springer, Berlin (1967).
- 6. V. Gould, "Axiomatisability problems for S-systems," J. London Math. Soc., 35, 193–201 (1987).
- 7. V. Gould, A. Mikhalev, E. Palyutin, and A. Stepanova, "Model-theoretic properties of free, projective, and flat S-acts," Fundam. Prikl. Mat., 14, No. 7, 63–110 (2008).

- 8. M. Kilp, U. Knauer, and A. V. Mikhalev, *Monoids, Acts and Categories*, Walter de Gruyter, Berlin (2000).
- 9. U. Knauer, "Projectivity of acts and Morita equivalence of monoids," *Semigroup Forum*, **3**, 359–370 (1972).
- 10. M. A. Pervukhin and A. A. Stepanova, "Axiomatizability and completeness of some classes of partially ordered polygons," *Algebra Logika*, **48**, No. 1, 54–71 (2009).
- 11. X. Shi, "Strongly flat and po-flat S-posets," Commun. Algebra, 33, 4515–4531 (2005).
- 12. X. Shi, Z. Liu, F. Wang, and S. Bulman–Fleming, "Indecomposable, projective and flat S-posets," Commun. Algebra, 33, 235–251 (2005).
- 13. B. Stenström, "Flatness and localization over monoids," Math. Nachr., 48, 315–334 (1971).
- 14. A. A. Stepanova, "Axiomatisability and completeness in some classes of S-polygons," Algebra Logic, **30**, 379–388 (1991).

M. A. Pervukhin

Institute of International Business and Economics,

Vladivostok State University of Economics and Service, Vladivostok, Russia

E-mail: pervukhinMA@yandex.ru

A. A. Stepanova

Institute of Mathematics and Computer Science, Far East State University, Vladivostok, Russia E-mail: stepltd@mail.ru