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Abstract—The intensive deformation processes of elastic-plastic
material are accompanied by heating in the plastic flow domain.
The aim of this study is to investigate the coupling of the plastic
deformations and temperature during rapid heating. Numerical-
analytical algorithm for the coupled thermoelastoplasticity prob-
lem is proposed. The boundary value problem of a continuous
elastic-plastic ball heating is considered. The analytical solutions
for the stress-strain state parameters were earlier obtained under
the temperature stresses theory frameworks and piecewise yield
criteria. The simultaneous existence of the unloading and plastic
flow domains under heating process was shown and analyzed.
The nonstationary heat conduction equation has the simplest
form in a spherical coordinate system inside unloading domains.
Otherwise, the source terms are aroused in the heat conduction
equation inside the plastic flow domain.

I. INTRODUCTION

The problem of the stress-strain state computation under

plastic flow conditions is more sophisticated under intensive

thermal action. The temperature gradient is similar to the

mass forces and the change of the temperature field can be

described as a certain mass force action distributed by material

volume. In depth studies of plastic flow under the external

action given on the boundary surfaces are discussed in [1],

[2], [3], [4]. The residual stresses are the essential factor

in most technological processes including natural phenomena

and additive manufacturing. The problems concerning residual

stresses computations in the frameworks of the large elastic-

plastic deformations are discussed in [1], [3], [4]. Some results

were presented in studies concerning residual stress calcu-

lations within the frameworks of the surface growth theory

to problems in geomechanics [5] and additive manufacturing

technologies [6], [7]. There are analytical solutions obtained

under the Tresca yield criterion [8], [9], [10], [11], [12], [13],

[2], [14], [15], [16]. In some cases, a model with hardening

was used under high values of plastic deformations provoking

the increasing yield strength. At contrary, it is necessary to take

into account the yield strength decreasing during the heating

process according to the experimental data.

Plastic flow is begun and irreversible deformations are

accumulated under the stress state reaching the yield surface.

A general algorithm in the frameworks of the finite element

method is based on the elastic-plastic matrix constructing at

each time for the increments of stresses and total deformations

(see in details [17], [18], [19]). However, the this procedure

using can lead to the non-uniqueness of the numerical solution

or misconvergence in the iterative processes accompanying

the numerical solutions of nonlinear problems. An alternative

way to solve elastic-plastic boundary value problems is the

numerical solution of the resulting system consisting of the

equations of equilibrium and the yield criterion. The resulting

differential equations can be reduced to non-linear algebraic

equations by the finite-difference approximations. Such prob-

lem is solved by the conventional method of initial iterations.

A particular feature of this method is the simultaneous calcu-

lation of the displacement vector (stresses) and the Lagrange

(undetermined) multiplier.

The solutions of the simplest one-dimensional boundary

value problems under piecewise linear yield criteria should

be fulfill the following requirements:

1) Stresses, deformations and displacements are continuous

at the elastic-plastic boundaries;

2) Plastic strain increments and deviatoric stress tensor

have the same principal directions (Associated flow rule,

von Mises principle).

The first requirement is satisfied automatically by the equi-

librium equations integrating. The fulfillment of the second

requirement depends on the convergence of the numerical

solution and is the main criterion for the reliability. Thus in

the present study we consider the numerical solution algorithm

for the thermal stress problem taking into account the plastic

properties.

The equilibrium equations integrating in terms of the

displacement vector give us the analytical solution in the

framework of the perfect plasticity theory. The Tresca yield

criterion accurately describes the elastic-plastic behaviour of

a material under shear deformations. Another piecewise linear

yield criterion is the Ishlinsky-Ivlev (maximum reduced stress)

yield criterion (see in details [12], [13], [20], [21]). The von

Mises yield criterion is more preferred in the case of thermal

expansion. The nonlinearity of this condition leads to the

necessity of numerical integration of the equilibrium equations

even in the one-dimensional case. Numerical algorithms have
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a high error value for non-stationary nonuniform temperature

effects calculation in consequence of the simultaneous exis-

tence of plastic flow and unloading domains and elastic-plastic

boundaries motion. At present study we proposed a technique

of the residual stress computing in the frameworks of the

piecewise linear Tresca and Ishlinsky-Ivlev yield criteria. In

the stationary thermal action case similar solutions correspond

to the von Mises yield criterion ones. As shown below, the

calculation process within frameworks of the piecewise linear

yield criterion is simpler and faster in the non-stationary case

in contrary to the numerical integration by virtue of the von

Mises yield criterion.
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II. GOVERNING EQUATIONS

Throughout the study the conventional Prandtle–Reuss

elastic-plastic model generalised on thermal effects [22], [14]

is used. The infinitesimal strain tensor dij additively splitted

into two parts as follows

dij = eij + pij =
1

2
(ui,j + uj,i) , (1)

wherein eij and pij denote the elastic (reversible) and plastic

(irreversible) deformations respectively ( 1); ui is the displace-

ments vector components; index after coma denotes the partial

spatial derivative.

The Duhamel–Neumann constitutive strain-stress equations

are given by

σij = (λekk − α (3λ+ 2μ)T ) δij + 2μeij . (2)

Here σij is the Cauchy stress tensor; T is the difference

between the actual and referential temperatures; λ, μ are the

Lame mudulus; α denotes the thermal expansion coefficient.

It is assumed that the thermal field is known at each point of

the material. In this case we can describe the stress-strain state

by the thermal stresses theory [22]. The equilibrium equations

can be formulated as

σij,j = 0. (3)

The significant stress level can cause plastic flow process.

In such domains the deformation processes occur in the

frameworks of perfect plasticity theory. The main thermody-

namical principle of this theory is the the von Mises maximum

principle (R. von Mises) [23], [24]. The main consequence of

this one is geometric convexity of yield surface f(σij) = 0 in

Haigh-Westergaard stress space) and orthogonality of plastic

strain increment dpij to yield surface at its smoothness points

for an actual plastic flow process. The principle of geometrical

orthogonality in stress space is simultaneously the main con-

stitutive law of the mathematical theory of perfect plasticity

known also as associated flow rule

dpij = dξ
∂f

∂σij
, (4)

where dξ ≥ 0 is the undetermined multiplier treated as a

Lagrange multiplier appearing while solving extreme problem

corresponding to the maximum principle. The indeterminate-

ness of multiplier dξ in theory of perfect plasticity is elucidated

by the fact that it is not considered as a given function of

the thermodynamic state variables and therefore a special

constitutive equation need not be formulated.

The yield criterion can be formulated as follows: piecewise

linear Tresca yield criterion [8] (maximum tangential stress

one)

f = max {|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|} − 2k(T ) = 0;
(5)

piecewise linear Ishlinsky–Ivlev yield criterion [12], [13]

(maximum reduced stress one)

f = max {|σ1 − σ| , |σ2 − σ| , |σ3 − σ|} − 4k

3
(T ) = 0;

(6)

von Mises yield criterion [25], [23] (maximum equivalent

tensile stress one)

f =

(
σij − 1

3
σkkδij

)(
σji − 1

3
σkkδji

)
− 8
3
k2(T ) = 0. (7)

Herein, k(T ) is the yield stress decreasing with increasing

temperature; σ = (σ1+σ2+σ3)/3, σ1, σ2, σ3 are the principal

stresses. We assume that the yield stress is the linear function

of the actual temperature

k(T ) = k0(1− β(T − T0)). (8)

Here k0 is the referential yield stress, β is the constitutive

constant, which can be experimentally obtained.

The yield criteria (5)–(7) can be presented as surface in the

stress space. In particular, the Tresca and Ishlinsky-Ivlev yield

criteria are the hexagonal prisms inclined to the coordinate

axes, and the von Mises one is the cylinder. The projections

of the yield criteria on deviatoric plane shown on Fig. 2.
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Fig. 1. Yield criteria in deviatory plane. The red circle is the von Mises
yield criterion. The inscribed green hexagon is the Tresca yield criterion. The
escribed blue hexagon is the Ishlinsky-Ivlev yield criterion.
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Hereafter we use the von Mises yield criterion. The equa-

tions for plastic deformations increments can be derived from

equations (4), (7) in follow form

dpij = dξ (3σij − σkkδij) (9)

The plastic incompressibility of a material is a consequence

of equation (9)

dpii = 0. (10)

The plastic deformations increments are represented as

follows

dpij = pij − p′ij , (11)

where p′ij denote the plastic deformations calculated at the

previous time. Thus, to solve the problem, the stress-strain

state calculations are to be divided into time intervals, the

number of which is determine the accuracy of the numerical

solution.

For elastic deformations one can obtained according the

equation (1)

eij = dij − pij =
1

2
(ui,j + uj,i)− pij , (12)

Assuming that there is a state at some referential time when

p′ij = 0 we can replace dpij = pij according to equations (10),

(11). Then plastic strain trace is vanished

pii = 0, (13)

and total deformations are read

dii = eii = ui,i. (14)

The elastic deformations are derived by equations (9), (11),

(12) as

eij =
1

2
(ui,j + uj,i)− dξ (3σij − σkkδij)− p′ij (15)

Then one can obtained by substituting the equation (15) in

(2) taking into account the equation (14)

σij = (Luk,k −m (T − T0)) δij +M(ui,j + uj,i − 2p′ij),

L(dξ) = λ+
4μ2dξ

(1 + 6μdξ)
, M(dξ) =

μ

(1 + 6μdξ)
.

(16)

Finally, the resulting differential system can be rewritten

after substituting (16) into equilibrium equations (3)

(L+M)uk,ki + uk,kL,i −mT,i +M(ui,kk − 2p′ik,k)
+M,k(ui,k + uk,i − 2p′ik) = 0.

(17)

In the case of elastic deformation process we have dξ = 0,

L = λ, M = μ and equations (17) are transformed to Lame

equations with accumulated irreversible deformations

(λ+ μ)uk,ki −mT,i + μ
(
ui,kk − 2p′ik,k

)
= 0 (18)

Inside the plastic flow domain the equations (17) and yield

criterion (7) form a system of 4 equations with respect to

variables ui, dξ.

III. BOUNDARY VALUE PROBLEM STATMENT

Consider the one-dimensional problem of an elastic-plastic

material deformation under uneven heating. The choice of this

statement is due to the available analitical solutions within the

frameworks of piecewise linear yield criteria. These solutions

make it possible to estimate the correctness of the numeri-

cal calculations. There is an infinitely long hollow cylinder

dzz = 0 with inner and outer radii R1 and R2 respectively.

The temperature at the inner surface of the cylinder is give

by T (R1, t) = t. There is no temperature change on the outer

surface T (R2, t) = 0. The temperature field is described by

the solution of the stationary heat conduction equation under

polar symmetry conditions

T (r, t) =
t ln(r/R2)

ln(R1/R2)
. (19)

The free thermal expansion conditions of at the boundary

surfaces of the cylinder are assumed

σrr(R1, t) = 0, σrr(R2, t) = 0. (20)

The equations for nonzero deformations are read by

drr = ur,r = err + prr,
dϕϕ = r−1ur = eϕϕ + pϕϕ,

dzz = ezz + pzz = 0,
(21)

where ur is the radial components of the displacements vector.

For nonzero stresses we can obtain the following equations

taking into account the equations (2)

σrr = (λ+ 2μ)err + λ(eϕϕ + ezz)− (3λ+ 2μ)Δ,
σϕϕ = (λ+ 2μ)eϕϕ + λ(err + ezz)− (3λ+ 2μ)Δ,
σzz = (λ+ 2μ)ezz + λ(eϕϕ + err)− (3λ+ 2μ)Δ.

(22)

Here Δ = αT denotes thermal expansion defromation. The

equilibrium equation (3) and compatibility conditions in the

case of polar symmetry take the form

σϕϕ = (rσrr),r, drr = (rdϕϕ),r. (23)

Then the reversible deformations err, eϕϕ and stress σzz

from equations (9) and (22) can be furnished by

err =

(
2λμp′zz + 2ΔM + (Λ + 2M)σrr − Λσϕϕ

)

4μ(Λ +M)
,

eϕϕ =

(
2λμp′zz + 2ΔM + (Λ + 2M)σϕϕ − Λσrr

)

4μ(Λ +M)
,

σzz =
((Λ +M − μ)(σrr + σϕϕ)− 2μ(3λ+ 2μ)(p′zz +Δ))

2(Λ +M)
,

(24)

wherein Λ(r, t) = (λ + 12λμdξ(r, t)), M(r, t) = (μ +
8μ2dξ(r, t)). Note that under condition dξ = 0 the equa-

tions (24) correspond to thermoplastic deformation (Λ = λ,

M = μ).
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Substitute the equations (9), (24) in (23) and derived

r2Λ(1 + μΓ)

4λμ
σrr,rr +

(
3rΛ(1 + μΓ)

4λμ
+

+
r2M,r

8

(
Γ2 + 3

μ2

))
σrr,r+

+
r

4
(3λ+ 2μ)

(
p′zz +Δ+

σrr

(3λ+ 2μ)

)
M,r+

+
r

2λ
(3λ+ 2μ)Δ,r + p′ϕϕ − p′rr+

+rp′ϕϕ,r +
r

2
(1− μΓ)p′zz,r = 0,

(25)

where Γ(r, t) =
1

(Λ(r, t) +M(r, t))
.

The von Mises yield criterion in the frameworks of the

considering problem is formulated by

f = σ2
rr + σ2

ϕϕ + σ2
zz − σrrσzz−

−σrrσϕϕ − σzzσϕϕ − 4k2 = 0.
(26)

The system of equations (25) and (26) relatively the vari-

ables σrr, dξ simulates the stress-strain state of the cylinder

during the plastic flow. The solution of this system under

the boundary conditions ( ref free) is numerically found

using the method of successive approximations. On this way

the differential equations (25), (26) reduced to the algebraic

equations system replacing the derivatives on the standard

finite difference approximations. Thus, the material of the

cylinder is divided into a finite number of nodes along the

radial coordinate r(i) = R1 + i
(R2 −R1)

im
(i is the node

number, im is the node amount). In each node a finite-

difference approximation of the system of equations (25), (26)

is constructed. Consider the algorithm for calculations of the

stress-strain state parameters. The calculations are sequentially

performed at each time step t(j) = jdt, using the results of

the calculations in the previous step. The following conditions

p′ij(r(i), 0) = 0, dξ(r(i), 0) = 0 are given at the initial time

t0 = 0. At the next time t(j) the temperature field is changed

and a system composed of (im − 2) equations (24) given in

the inside nodes under boundary conditions (20) is solved.

Thus, a numerical solution is constructed for σrr within the

frameworks of the thermoelasticity. At each time step the

condition f > 0 (26) is tested. If it is performed at certain

node we add the equation f = 0 to equation (25) with new

variable dξ. If f < 0 at a node then dξ = 0. The number

of nodes satisfying the condition f > 0 is increased with the

plastic flow developing. The closest node to the plastic flow

domain under conditions f < 0 (dξ = 0) can be considered as

an approximate position of the elastic-plastic boundary. The

condition dξ > 0 at present study is used as a criterion for the

numerical solution correctness inside the plastic flow domain.

Therefore, the number of spatial nodes and time intervals is

chosen in such a way that the parameter dξ are always positive

during the calculations. Negative values of this parameter

mean a high calculation error and incorrect determination of

the irreversible deformation domain boundaries.

IV. RESULTS DISCUSSION

In this section we use the analytical solution for the Tresca

and Ishlinskii-Ivlev piecewise linear yield criteria to verify the

correctness of the numerical solution for the von Mises yield

criterion. On the Fig. 2 the thermal stresses are shown.

0.2 0.3 0.4

−2

−1

0

r/R2

σij/k0

Fig. 2. Thermal stresses. Arithmetic mean (blue line) of the solutions for
the Tresca and the Ishlinsky–Ivlev yield criteria. The numerical solution (red
line) for the von Mises yield criterion. R1/R2 = 0.2

Note that the boundaries of the plastic flow domains for

both solutions coincide with an accuracy of 99.97 percent.

Calculations show that this accuracy has the maximum value

in the case when the undetermined multiplier is positive at

each point inside the irreversible deformation domain at any

time. A further increasing in the number of nodes along the

spatial and time coordinates does not lead to a change in the

position of the elastic-plastic boundary. Thus, we can conclude

that the resulting positive value of the multiplier dξ at each

time step corresponds to the correctness of the assumption that

at a given time step the plastic flow is present at the elastic
points where stress exceeds the yield stress.

V. CONCLUSIONS

The conventional Prandtl–Reuss model generalized by the

thermal effects under the von Mises yield criterion have been

used. It is assumed that the material is deformed without

hardening and the yield stress depends on the temperature. It

is shown that the system of equations for the stress-strain state

calculations can be reduced to algebraic equations system by

means of finite-difference approximations. It is established that

criterion for the numerical solution correctness is the condition

of Lagrange multiplier positivity.
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