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Abstract—We use the solution of a one-dimensional problem of the theory of thermal stresses in
an elastoplastic tube heated on its interior surface and maintained at a constant temperature on
the exterior surface as an example to make a comparison of both the results and solution methods
depending on the choice of each of three conventional yield criteria: piecewise linear criteria of
maximum shear and maximum reduced stresses and a smooth criterion of maximum octahedral
stresses. It is established that while the transition of stresses from the face of the Tresca prism to its
edge (change in the flow regime) in the first of the piecewise linear yield criteria takes place at the
plastic flow onset, in the second one, this transition occurs on the elastoplastic boundary. The yield
stress is assumed to be temperature dependent.
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1. INTRODUCTION
Within the framework of the plastic flow theory, the solution of the boundary value problem on

thermal stresses in a thick-walled tube made from an ideal elastoplastic material was first obtained
by D. Bland [1]. The possibility of obtaining such an analytical solution has been determined mainly
by using Tresca-Saint Venant piecewise linear yield criterion. It has been observed that in this case
the region of plastic deformation can be divided into parts, in which irreversible deformation occurs
in accordance with different systems of differential equations depending on the belonging of stressed
states to different faces and edges of the yield surface (the inclined Tresca prism in the 3D space of
principal stresses). Thus, the piecewise linear yield criteria simplifying the mathematical apparatus
with the possibility of obtaining an analytical solution give rise to another difficulty associated with the
plastic region separation into parts. The time instants and onset places of boundary surfaces separating
these plastic subregions together with the place and time of onset of elastoplastic boundaries as well
as the consistent patterns of advancement of these surfaces along the deforming material are the
integral elements of solutions being built and, therefore, they must be monitored in the process of
constructing solutions. This is especially necessary when the process of thermomechanical action ends
with the unloading and cooling to room temperature. This happens, for example, when modeling the
technological operation of assembling elastoplastic cylindrical parts by the shrink fit method [2–5].
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If we assume that the mechanical parameters (elastic moduli, yield stress) depend on temperature
then it becomes more complicated to obtain analytical solutions. Sometimes it is even impossible,
since the statement of the problem using piecewise linear yield criteria, for example, the Tresca-Saint
Venant criterion of the maximum shear stresses is contradictory, despite the fact that the solution
exists for a constant yield stress. Changes in the geometry of the calculated regions of plastic flow
and especially the appearance and disappearance of these regions also make it difficult to approximate
numerical calculations, therefore, active processes are mainly considered without taking into account
the unloading [6–10]. In this article, we also consider, in the framework of the theory of thermal stresses,
only the active thermal loading of a thick-walled elastoplastic tube, the yield stress of which depends on
temperature. The main objective here is to compare both the results of the calculations of the acquired
irreversible deformations and thermal stresses and methods for calculating them.

2. STATEMENT OF THE PROBLEM. THE INITIAL EQUATIONS
Assume that the tube is made of an elastoplastic material limited by cylindrical surfaces r = R1

(internal radius) and r = R2 (external radius). Thermal action on the material is associated with
a proportional to time increase of temperature on its internal surface, while the external surface is
maintained at a constant room temperature T0. We suppose that until the start of heating t = 0 the
material is in a free state at the temperature T0. In order to obtain analytical solutions, we assume that
the temperature increase is slow and the temperature distribution corresponds to the quasi-stationary
case

T (r, t) − T0 = ψt
ln(r/R2)

ln(R1/R2)
. (2.1)

Here ψ is the heating rate. The lateral surfaces of the tube are considered to be free: σrr(R1) = 0,
σrr(R2)=0. Deformations in the tube material are assumed to be small and formed by reversible (elastic)
and irreversible (plastic) deformations. Consequently, under the conditions of one-dimensional problem
in a cylindrical coordinate system (r, ϕ, z) we have the relations:

drr = err + prr = ur,r, dϕϕ = eϕϕ + pϕϕ = r−1ur, dzz = ezz + pzz = 0. (2.2)

Here drr, dϕϕ, dzz are the complete deformations, err, eϕϕ, ezz are the reversible deformations, prr, pϕϕ,
pzz are the irreversible components of deformation. Reversible deformations specify the stresses in the
tube material [11]

σrr = (λ + 2μ)err + λ(eϕϕ + ezz) − 3Kθ,

σϕϕ = (λ + 2μ)eϕϕ + λ(err + ezz) − 3Kθ,

σzz = (λ + 2μ)ezz + λ(err + eϕϕ) − 3Kθ.

(2.3)

In (2.3) λ and μ are the elastic Lame constants, K = λ + 2μ/3 is the bulk modulus, θ = α(T − T0) is
the thermal component of deformations, and α is the coefficient of thermal expansion. With temperature
growth, elastic deformations and, consequently, stresses increase. Irreversible deformation begins with
the emergence of the stressed states on the yield surface, that is, when the plastic flow condition is
satisfied. As such conditions, conventional yield criteria [12, 13] will be used below:
the criterion of maximum shear stress (the Tresca-Saint Venant criterion):

f(σ1, σ2, σ3) = max |σi − σj| − 2k = 0; (2.4)

the maximum octahedral stress criterion (the von Mises criterion)

f(σ1, σ2, σ3) = (σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 − 8k2 = 0; (2.5)

criteria of maximum reduced stress (the Ishlinsky–Ivlev criterion):

f(σ1, σ2, σ3) = max |σi − σ| − 3
4 k = 0, σ = 1

3 (σ1 + σ2 + σ3). (2.6)

Here σi are the principal values of the stress tensor, k is the yield stress.
For the latter we use its simplest temperature dependence

k(θ) = k0(1 − βθ), (2.7)
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