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Abstract. The present study is devoted to the problem of the thermal stresses theory for a hollow thermo-
elastic-plastic ball under unsteady heating. Throughout the paper the conventional elastic-plastic Prandt-
Reuss model generalized on the thermal effects is used with the Tresca yield criterion linearly depending on
temperature. A numerical-analytical algorithm for calculating the elastic-plastic boundaries positions and
irreversible deformations is proposed. The strain-stress states during the plastic flow, repeated plastic flow
and unloading are analyzed. The strain-stress state parameters like residual stresses and displacements are
computed and analyzed.

1. Introduction
The prediction of residual stresses caused by uneven heating of elastoplastic material is one
of the most important modern engineering problem. The main approach here is the solutions
taking into account the plastic properties of materials under thermal action with the assumption
of the independence of the temperature field from deformations [1-17]. Some results of the
similar problems were used in the studies concerning residual stress calculations within the
surface growth theory frameworks in additive manufacturing technologies (e.g., see [18, 19]) and
geomechanics (e.g., see [20]). A number of problems were investigated for a stationary distributed
temperature field. These solutions were constructed by comparison with isothermal elastoplastic
problems solutions. New qualitative solutions can be obtained within the frameworks of the
temperature stresses theory when the stresses occurs in virtue of a non-stationary thermal field
gradient. The deformed state of the material can simultaneously satisfy to conditions of plastic
flow and unloading in different domains. Elastoplastic boundaries separating such domains of
irreversible deformation appear and disappear, moving in the direction of the thermal gradient
increasing. The dependence of the yield stress on temperature leads to the appearance of
high levels of residual deformations that can cause the reverse plastic flow during unloading.
The study of these problems allow us to more accurately predict the distribution of residual
stresses and deformations during high temperature metal forming. The processes of arising,
development and disappearance of plastic flows during heating cause the necessity of elastoplastic
boundaries localisation and irreversible (residual) deformations computing within unloading
domains. The problems when the elastoplastic boundaries depend on the deformation process
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and are completely determined by the known temperature field are discussed in depth in [3-
6,13,14]. They consider the problems of heating symmetric elastoplastic solids [3-6] and plates
[2]. In the present paper the residual deformation within the unloading domain is derived by an
envelope of the possible plastic deformations family within the plastic flow domain undepending
on the residual deformations. The solution of the problem of non-stationary heating of hollow
elastoplastic solids is more complicated. In this case, the boundaries position depends on the
level of residual deformations and must be determined due to a system of integro-differential
equations defining the conditions for the stress-strain state parameters continuity. In this paper,
a numerical-analytical technique for determining the elastoplastic boundaries spatial localisation
in a one-dimensional problem of heating a hollow elastoplastic ball is proposed. It allows one to
calculate the positions of the elastoplastic boundaries and the distribution of plastic deformations
under conditions of a linear dependence of the yield stress on temperature with high accuracy
and speed. The case reverse plastic flow in the heating domain is also considered. Distributions
of residual stresses and displacements forming during cooling of the material are computed.

2. Governing Equations. Boundary Value Problem Statment
Hereafter let use the conventional Prandtle–Reuss elastic-plastic model generalized on thermal
effects [1, 2]. Consider thermoelastoplastic hollow ball with inner and outer radia R0 and R1

respectively under referential temperature T = T0 and under thermal expansion conditions

σrr(R0) = 0, σrr(R1) = 0, T,r(R0) = 0, T (R1) = T0(1− e−xt). (1)

Total deformations can formulae depending on the radial displacement

err = ur,r, eφφ = eθθ =
ur
r
. (2)

Then according to eqs. (2) we obtain the relationship between components of the total strain
tensor

err = ur,r =
(rur
r

)
,r

= (reφφ),r . (3)

The equilibrium equation in the spherical symmetry case is read by

σrr,r +
2 (σrr − σφφ)

r
= 0, (4)

and the components of stress tensor are coupled by formulae

σφφ = σθθ =
1

2r

(
r2σrr

)
,r
. (5)

The constitutive strain–stress equations in the spherical symmetry case are formulated by

err = α (T − T0) +
(λ+ µ)σrr − λσφφ

µ (3λ+ 2µ)
, eφφ = α (T − T0) +

(λ+ 2µ)σφφ − λσrr
2µ (3λ+ 2µ)

. (6)

Throughout the present study we chose the Tresca yield criterion (maximum tangential stress
one)

f = max {|σ1 − σ2| , |σ2 − σ3| , |σ3 − σ1|} − 2k(T ) = 0, (7)

and the the yield stress k linearly dependent on temperature [2]

k = k0

(
1− T − T0

Tm − T0

)
, (8)

wherein k0 is the yield stress under referential temperature T0, Tm denotes the melting
temperature of material.
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3. Plastic Flow and Unloading Problems Solutions
The stress state corresponds to the edge of the Tresca’s prism (7) under certain outer
temperature. Then the size of plastic flow domain are given by inequalities a(t) < r < R1,
where a(t) is the elastic-plastic boundary. Plastic deformations in this domain are furnished by

prr = −2pφφ = 2αT − 8αk

ν
− 6α

r3

r∫
a
Tρ2dρ− 2D(t)

r3
,

D =
3αa3(
a3 −R3

0

) ( a∫
R0

Tρ2dρ+
4R3

0

ν

R1∫
a

k

ρ
dρ

)
.

(9)

The slowdown of plastic deformations increasing (9) is coupled with the levelling of the
temperature gradient. At some point on the surface r = R1 the following condition ṗrr = 0 will
fulfilled meaning the termination of the yield criterion. Thus the unloading domain b(t) < r < R1

is enlarged, where b(t) denotes the unloading boundary. Then for the time dependent function
D(t) (9) the following equation can be obtained

D = J

(
2α

R3
0

a∫
R0

Tρ2dρ+
2α

R3
1

R1∫
b

Tρ2dρ−
2α
(
R3

1 − b3
)

R3
1b

3

b∫
a
Tρ2dρ+

2α

ν

b∫
a

k

ρ
dρ−

R1∫
b

p′rr
ρ
dρ

)
, (10)

where J(a, b) =
3a3b3R3

1R
3
0

2
(
a3b3R3

1 −R3
0

(
a3b3 +R3

1 (b3 − a3)
)) .

The following nonlinear equations system can be solved to obtain the elastic-plastic boundaries
positions and the function of irreversible deformation p′rr

prr(a, t) = 0,

p′rr(b) = prr(b, t),

ṗrr(b, t) = 0.

(11)

Then one can approximate the integrals of deformation function p′rr. Assume that the function
of irreversible deformation p′rr(r) is smooth inside unloading domain. Then for a small time
interval ∆t = t1 − tu the unloading domain is enlarged according to ∆b = b1 − R1. The

integrand
p′rr(r)

r
is similar to straight line in the interval ∆b. This straight line passes through 2

points with coordinates

(
b1,

p′rr(b1)

b1

)
and

(
R1,

p′rr(R1, tu)

R1

)
. Integral

R1∫
b1

p′rr
ρ
dρ is the case can

be transformed by

R1∫
b1

p′rr
ρ
dρ = I(b1) =

1

2
(b1 −R1)

(
p′rr(b1)

b1
+
prr(R1, tu)

R1

)
.

Substituting this expression into equations (11), and using the method of successive
approximations, we find the values p′rr(b1), b(∆t + tu) = b1,a(∆t + tu) = a1. At the i–th
time step i∆t+ tu integral can be rewritten as

R1∫
bi

p′rr
ρ
dρ = I(bi) =

1

2
(bi − bi−1)

(
p′rr(bi)

bi
+
p′rr(bi−1)

bi−1

)
+ I(bi−1). (12)
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Consistently calculating the values ai, bi, p
′
rr(bi), at each time step, we find the elastoplastic

boundaries positions and the irreversible deformation inside the unloading area. The condition
a(tk) = B(tk) is fulfilled during the calculation at some time meaning the ending of the
irreversible deformation process.

Assume that at the time t = tr > tu on the inner surface the yield criterion (7) is valid.
Then for a time t > tr within vicinity of the inner syrface (R1 < r < c(t)) the plastic flow
domain is developed, where c(t) is the elastoplastic boundary. Thus, there are both plastic flow
and thermoelastic deformation (unloading) domains. The strain-stress state parameters within
domain (c(t) < r < R2) are derived by equations

σrr = 4

∫ r

c

k(ρ, t)

ρ
dρ+G(t), σϕϕ = 4

∫ r

c

k(ρ, t)

ρ
dρ+ 2k(r, t) +G(t),

ur =
4r

(3λ+ 2µ)

∫ r

c

k(ρ, t)

ρ
dρ+

3

r2

∫ r

R1

∆(ρ, t)ρ2dρ+
G(t)r

(3λ+ 2µ)
+
H(t)

r2
,

prr = 2∆(r, t)− 6

r3

∫ r

R1

∆(ρ, t)ρ2dρ+
2k(r, t)

ω
− 2H(t)

r3
.

(13)

For time dependent functions taking into account the new dependencies (13) we have following
relations

m =
3a3b3c3R3

1

R3
1(b3c3 − a3(c3 − b3))− a3b3c3

,

W (t) = m

(
1

c3

∫ c

R1

∆(ρ, t)ρ2dρ+
1

a3

∫ a

R1

∆(ρ, t)ρ2dρ−

− 1

b3

∫ b

R1

∆(ρ, t)ρ2dρ+
1

ω

∫ b

a

k(ρ, t)

ρ
dρ− 1

ω

∫ R2

c

k(ρ, t)

ρ
dρ

)
,

D(t) =
m

2

∫ R2

b

p′rr(ρ)

ρ
dρ−W (t),

A =
4ω

3c3
D(t) + 4

∫ c

R1

k(ρ, t)

ρ
dρ+

4ω

3c3

∫ R1

2

p′rr(ρ)

ρ
dρc,

B = −4

3
ωD(t), F = −4

3
ωD(t), H = D(t),

E = −2ω

∫ R2

b

p′rr(ρ)

ρ
dρ+

4ω

3R3
2

∫ R2

R1

∆(ρ, t)ρ2dρ+
4ωD(t)

3R3
2

,

C = 4

∫ c

R1

k(ρ, t)

ρ
dρ− 4ω

a3

∫ a

R1

∆(ρ, t)ρ2dρ−

−4ω(c3 − a3)D(t)

3a3c3
+

4ω

c3

∫ c

R1

∆(ρ, t)ρ2dρ.

(14)

The localisations of elastoplastic boundaries a(t), b(t), c(t) and irreversible deformation p′rr(r)
can be obtained by numerically solution of the system of equations (11) and adding equation
which determines the vanishing of plastic deformation

prr(c, t) = 0. (15)
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Initial approximations for the system (11), (15) are given by the values c0 = R2, a0 = a(tr),
b0 = b(tr), p

′
rr(b0) = p′rr(b(tr)).

Fig. 1 shows the stresses at the moment of the disappearance of the first plastic flow and the
development of a repeated plastic flow inside the outer surface vicinity

1 1.1 1.2 1.3 1.4 1.6 1.7 1.8 r/R1

-1

-0.5

0

0.5

1

σij/k0

b′ c

σrr
σϕϕ

Figure 1. Field of stresses in a continuous sphere in case of occurrence of repeated plastic flow
on the external surface, R2/R1 = 2, b′ is the final boundary position of the unloading domain

The strain-stress state within the domain of the repeated plastic flow (c(t) < r < R2)
transforms into a state of neutral loading under gradual equalization of the temperature field.
The repeated plastic flow boundary occupies the limiting position c(t) = c′. The subsequent
unloading of the material occurs as a result of an increasing of the yield strength under uniform
cooling. Stresses of the fully heated ball under the given temperature (∆,r(r, t) = 0) are the
residual ones (Fig. 2).

1 1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9 r/R1

-1

-0.5

0

0.5

σij/k0

b′ c′

σrr
σϕϕ

Figure 2. Residual stresses at zero temperature gradient (maximum temperature / referential
temperature)

Fig. 3 shows us the radial distribution of the displacement after a uniform cooling of the ball
to the referential temperature (∆(r, t) = 0)

From Fig. 3 it follows that in the case of the development of irreversible deformation processes
in the material of a hollow sphere, its size after cooling to the initial temperature will be smaller
than the referential size.
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1 1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9 r/R1

-0.006

-0.005

-0.004

-0.003

-0.002

ur/R1

b′ c′

Figure 3. Residual radial displacement at referential temperature
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Conclusion
• The boundary value problem within frameworks of the the conventional Prandtle–Reuss

elastic-plastic model generalized on thermal effects have been solved.

• The hollow elastic-plastic ball under central symmetry unsteady heating have been
considered. The numerical-analytical algorithm for calculating the elastic-plastic boundaries
positions and irreversible deformations has been proposed.

• It has been shown that the strain-stress state within the domain of the repeated plastic
flow has been transformed into a state of neutral loading during the temperature field
equalization.

• It has been shown that the accumulated irreversible deformation in a hollow sphere lead to
decreasing its size after cooling to the referential temperature.
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