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Abstract—The present study deals with the elastic plastic
boundary value problems statements in toroidal coordinates.
The basic model relations of the temperature stresses theory
are furnished in a toroidal coordinate system. The computation
problem of the stress-strain state of a hollow elastic-plastic torus
subjected to uneven radial heating is considered. Analytical
solutions are obtained for the stress and displacement fields in
the thermoelastic deformation and plastic flow domains within
the framework of the generalized plane stress state hypothesis.
The possibility of applying the solutions obtained for the stress-
strain state of a torus of arbitrary sizes under conditions of an
axisymmetric thermal action is discussed.

Index Terms—stress, deformation, toroidal symmetry, plas-
ticity, residual stress.

I. INTRODUCTION

THE thermal stresses theory studies the effect of a given
temperature field on the stress-strain state evolution in

the material. The particular interest of the researchers is the
study of the processes of irreversible deformation being result
of the influence of high temperature gradients. A number of
boundary value problems have been solved for solid elastic-
plastic material under conditions of central and axial sym-
metry of the thermal action. In particular, one-dimensional
solutions are obtained for an thermoelastic-plastic ball see
in depth studies for example in [1]–[6]. The non-uniform
temperature heating and the dependence of the yield stress
on temperature were taking into account. The solutions
in a cylindrical coordinate system in frameworks of axial
symmetry conditions are obtained for various yield criteria
describing the irreversible deformation of elastic-plastic thin
disks [7]–[11], thick-wall pipes [12]–[21], assembled circular
structures manufacturing by the shrink fit method [9], [22],
[23], [23]. Such thermomechanical problems and solutions
are needed for simulation of the additive manufacturing
technology processes and further exploitation of materials
producing by such approach [5], [6], [24]–[28].

The plane strain or plane stress state hypotheses, as well
as an axisymmetric distribution of the temperature field
are assumed for above symmetrical problems statements
allowing us to obtain reduced one-dimensional solutions
describing the wide range of the thermoelastic behaviour
of a material and its deformation during plastic flow and
following unloading processes.

One of the poorly studied problem in the thermal stresses
theory is the one of the solid deformation state possessing
toroidal symmetry. The toroidal structures is widely used
in such fields as magnetostatics, magnetohydrodynamics,
controlled thermonuclear fusion, thermonuclear synthesis,
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etc. The temperature field influence can be significant in
evaluating of the strength characteristics and deformations
for such structures. The present paper is devoted to the
problem of the stress-strain state computation of a hollow
elastic-plastic torus subjected to a radial distribution of the
temperature gradient.

II. GOVERNING EQUATIONS IN TOROIDAL
COORDINATES

Throughout the paper we will use conventional
thermoelastic-plastic model akin to Prandtl and Reuss
[29]. Infinitesimal deformations dij = eij + pij with elastic
eij and plastic pij compounds are derived due to the
displacements ui by following equations
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uθ,θ
r

+
ur
r
,
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(1)
where indices after comma denote the partial derivative with
respect to spatial coordinate.

The equilibrium equations can be formulated in terms of
the stress tensor σij by

σrr,r +
σrθ,θ
r

+
σrϕ,ϕ
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+
σrr − σθθ

r

+
sin(θ)
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r

+
sin(θ)

(R0 + r sin(θ))
(σrθ + cot(θ)(σθθ − σϕϕ)) = 0,

σrϕ,r +
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+
σrϕ
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(2)
Constitutive stress-strain equations are read according to the
Duhamel-Neumann thermoelastic constitutive law [29]

σij = λδij(err + eθθ + eϕϕ)

−αδij(3λ+ 2µ)(T − T0) + 2µeij ,
(3)

where δij is Kronecker delta; λ, µ are the Lame modulus; α
denotes linear thermal expansion coefficient; (T−T0) defines
difference between the actual and referential temperature of
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the material. Heat conduction equation in toroidal coordi-
nates is furnished by

T,rr +
(R0 + 2r sin(θ))T,r
r(R0 + r sin(θ))

+
T,θθ
r2

+
cos(θ)T,θ

r(R0 + r sin(θ))
+

T,ϕϕ
(R0 + r sin(θ))2

=
1

κ

∂T

∂t
.

(4)

III. PROBLEM STATEMENT

Consider a hollow torus with the major radius R0 and
r1 < r < r2 (inner and outer radii). We also assume that
the material is affected by the axisymmetric temperature
distribution with respect to the Cartesian axis Z. Free thermal
expansion condition is given on the inner and outer toroidal
surfaces

σrr(r1, θ) = 0, σrθ(r1, θ) = 0,

σrr(r2, θ) = 0, σrθ(r2, θ) = 0.
(5)

At first the problem is considered under conditions of ther-
moelastic equilibrium (dij = eij). Numerical analysis of the
boundary value problems shows us that the temperature field
distribution essentially depends on the geometry of the torus.
Note that the temperature field for small values of the pa-
rameter ε = r2/R0 can be described by function depending
only on radial coordinate. Moreover the toroidal symmetry
becomes cylindrical when the parameter ε = r2/R0 is tended
to zero, which allows us to obtain one-dimensional analytical
solutions. It is important to determine the admissible non-
zero values of the parameter ε, for which the cylindrical solu-
tions will satisfactorily describe two-dimensional numerical
toroidal solutions for a given geometry.

The stationary heat conduction equation at ε = 0 can be
derived in form

T,r + rT,rr = 0.

with the boundary conditions T (r1, θ) = Tk, T (r2, θ) =
T0.

The maximum deviation of the analytical solution of this
equation from the numerical solution of equation (4) is less
than 2% for ε = 0.1 and r1/r2 = 0.4. Consequently, with a
sufficiently high degree of accuracy, the temperature distri-
bution for ε < 0.1 can be considered as one-dimensional.

We compute the stress-strain state under conditions of
thermoelastic equilibrium at ε = 0. System of equilibrium
equations (2) is transformed to

σrr,r +
σrθ,θ
r

+
σrr − σθθ

r
= 0,

σrθ,r +
σθθ,θ
r

+
2σrθ
r

= 0.

(6)

The components of the displacement vector are represented
in the following form

ur(r, θ) = F (r) +R0C sin(θ),

uθ(r, θ) = R0C cos(θ),

F (r) =
γ

r

r∫
r1

∆(ρ)ρdρ+Ar +
B

r
,

∆(r) = αr(T (r) − T0), γ =
(3λ+ 2µ)

(λ+ 2µ)
.

(7)

where A, B, C is unknown constant. The stress tensor
components are obtained from (3) according to relations (7).
Constants A, B can be found from free thermal expansion
condition (5). Constant C is calculated from equation

r2∫
r1

2πσϕϕ(ρ)ρdρ = 0 (8)

IV. PLASTIC FLOW

The process of thermoelastic deformation calculating with
increasing temperature Tk is limited by the probability of
the stressed state reaching the yield surface (Tresca prism).
A plastic flow arises on the inner surface of the torus under
the Tresca condition as follows

σrr − σθθ = 2k, σrr − σϕϕ = 2k, (9)

wherein k = k0(1 − β∆) denotes yield strength, β is
the rate of yield strength dependence on the temperature
increasing. The boundary b of the plasticity domain moves
in the direction of the outer surface with temperature Tk
increasing. Functions (7) of displacements and stresses in
thermoelastic domain (b < r < r2) remain valid up to new
integration constants A, B, C.

Plastic domain consists of the two parts: complete plastic-
ity domain (r1 < r < a) corresponding to the Tresca prism
edge under condition (9), plasticity domain (a < r < b)
corresponding to the Tresca prism facet under condition
σrr − σϕϕ = 2k.

The problem is statically determinate in domain (r1 < r <
a) then stresses can be found as solution of the equilibrium
system (2) under conditions (5) and (9)

σ∗
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r
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ρ
dρ,
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r

r∫
r1

k(ρ)

ρ
dρ− 2k.

(10)

The displacements in this domain can again be represented
as a sum of functions

ur(r, θ) = F ∗(r) +R0C sin(θ),

uθ(r, θ) = R0C cos(θ),

F ∗(r) =
3

r

r∫
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(
r

r∫
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k(ρ)

ρ
dρ

+
1

r
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k(ρ)ρdρ

)
+ Cr +

D

r
,

(11)

where D is the integration constant.
The displacements in the domain a < r < b are repre-
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sented in the form
u∗∗r (r, θ) = F ∗∗(r) +R0C sin(θ),

u∗∗θ (r, θ) = R0C cos(θ),
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ψ
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(
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rη
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∆(ρ)
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− 1
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(
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+rη
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ρη
dρ

)
+Mrη +
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,

(12)

where M , N are the integration constants. The system of
equation for the constants A, B, C, D, M , N consists of
the conditions (5) and (8) and continuity conditions of radial
stresses and displacements at the plastic boundaries a and b.

V. CONCLUSION
The results of calculations for thermal stresses and dis-

placements are presented on the Figs 1, 2, and 3 respectively.
Solutions for stresses and displacements obtained under

conditions of thermoelastic equilibrium were compared with

numerical results for various values of the parameter ε. It
was found that for ε < 0.1 the maximum deviation of
analytical solutions for stresses is less than 4% of numerical
calculations. In this case, the solutions for displacements
differ by less than 1% of the numerical counterparts. Thus, it
can be concluded that the obtained analytical solution can be
used with a high degree of accuracy to calculate the stress-
strain state of thermoelastic material at positive values of the
parameter ε. It is obvious that these solutions are useful in
modelling the plastic flow process, since they allow one to
obtain the most simple way of stresses and displacements
calculations in the plastic flow domains and ensure conti-
nuity of the functions at elastic-plastic boundaries. Further
possible investigation of the stress-strain state under toroidal
symmetry is associated with the construction of approximate
solutions taking into account the non-stationarity of the
temperature gradient and the possibility of the appearance
of a repeated plastic flow during unloading processes.
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