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Abstract 

The present paper deals with the problem of the elastic-plastic plate heating. Considering problems are solved with the various
yield stress depending on temperature. Throughout the paper the model of thermo-elastic-plastic deformation are used. We consider 
Tresca yield criterion, von Mises one, and Ishlinskiy-Ivlev one. The boundaries of the irreversible deformation domain are 
computed according to the analytical and numerical results. A comparison of the analytical results for various yield stresses is
discussed. The residual stresses were computed and graphically analyzed. The characteristics of the plastic flow in the heating
domain according to the yield strength selection are eliminated. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of Implast 2016. 
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1. Main text  

Thermal stresses have a significant effect on parts of various mechanisms operating under high temperature 
gradients. Nonstationary temperature field variations result in the formation of residual strains and stresses. 
Accounting of such strains and stresses is necessary for accurate determination of the geometry and strength 
characteristics of the related objects. It is well known that temperature affects the yield stress of material by increasing 
the probability of appearance of irreversible deformations.  

The boundary value problem of the heating and cooling of elastic-plastic bodies previously considered in [1-17]. 
For example, in [1] the analytical solution was found for the Tresca yield criterion in problems of the plastic flow. It 
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was shown that the irreversible deformation region composed of several parts.  The analytical solution for the central 
heating of a thin circular plate with Ishlinsky-Ivlev yield criterion depending on temperature was obtained in [3]. It 
has been found that the assumption of the Tresca yield criterion leads to physically incorrect results in the irreversible 
deformation domain. The results obtained in [3] are valid for the case of plane strain condition. Yield strength is 
constitutive material parameter and strongly depends on temperature. Therefore, the such dependence assuming in the 
thermal plasticity problems allows to obtain more faithful solutions in the plastic domains, as well as to identify the 
differences in solutions for different yield criteria. In this paper, we solved one-dimensional problem of long hollow 
cylinder heating by irregular thermal field under Ishlinsky-Ivlev yield criterion. 

The boundary value problem for a radial symmetrical stresses in a perfectly plastic disk heated by a heat source of 
circular shape and constant output was investigated in [14]. At present study we consider rapid heating and 
consequence cooling of a thermos-elastic-plastic disk. The analytical solution for stress-strain state under unsteady 
temperature gradient was obtained due to Tresca yield criterion with temperature independent yield stress. In [15] the 
problem of circular contour heating of a plate under increasing temperature gradient was discussed. It was shown that 
at high temperature levels the plastic flow domain reaches a size at which it becomes possible existence of additional 
plastic flow domains with the different edges of Tresca yield criterion. The problem in the Tresca yield criterion 
framework, taking into account the linear dependence of the yield stress on temperature was first considered in [3]. 
This paper presents a new solution to the problem with Ishlinsky-Ivlev yield criterion [16].  

2. Governing equations. Thermoelastic equilibrium. 

Let consider an infinite thin plate which is rapidly heating at a predetermined radius Rr . The boundary 
conditions for temperature are given in the form: 
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where x  is the temperature balancing speed, mT , 0T  are the maximal and referential temperature. The analytical 

solution for the given temperature field (Fig. 1a) is presented in [3]. Material of the plate assume like the elastic-plastic 
media. Infinitisimal strains consist of reversible ije  (thermoelastic) and irreversible ijp  (plastic) strains: 
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wherein ru  is the radial component of the displacement vector. 
The relation between the components of the stress tensor and elastic deformation is defined by using the Duhamel-

Neumann law [17]: 
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Here ,  are the Lame parameters, )( 0TT   is the deformation of linear thermal expansion, 
is  thermal expansion coefficient. Constitutive equations (3) are supplemented by equilibrium equation and boundary 
condition
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We obtain a closed system of differential equations determining the thermoelastic state of the material at a given 
thermal distribution. The solution of this system reads: 
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3. Plastic Flow and Unloading. 

The plastic flow begun from a certain temperature level due to Ishlinsky-Ivlev yield criterion satisfaction 

),(4),(2),( tRktRtRrr          (6) 

Here )),(1(),( 0 trktrk  is the linear function on temperature, 0k  referential yield stress,  is the degree of 

the yield stress dependence on temperature. According to plastic flow rule [16], associated with yield surface (6). Thus 
the plastic incompressibility is valid for the plastic strain increment: 

0zzrr ppp , zzrr pp .         (7) 

We obtain the function of thermal stresses, the radial displacement and plastic deformations in the plastic flow 
domain bra  by integrating the system of equations (4), (6), (7) in forms: 
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Herein X , Y  are the unknown functions. The thermoelastic equilibrium occurs in two areas separated by the 
plastic flow domain. Thus for each thermoelastic domains one can obtained due to (5) two similar solution: 
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Unknown functions contained in the equations (8), (9) are derived from the boundary conditions (4) and the stress 
and displacements continuity on the elastic-plastic boundaries: 
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The position of elastic-plastic boundaries a , b  is calculated by numerical solution of two equations 0),( taprr

, 0),( tbprr .
One can be found that the temperature field can reach values for which the yield criterion edge may be chahged 

from conditions (6) to the conditions krr 42 , krr 4 . Thus the equilibrium equation transforms to 

r
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k
. Obviously, this equation can be satisfied only if the yield strength is a linear depend on a radius and if a heat 

flux is stationary linear. Consequently, the parameter  is essential with uneven heat distribution. Note that the one-

dimensional elastic-plastic problem has no solutions at low yield strength in the cylindrical symmetry case.  
Consider the process of the material unloading. The analytical solution for the temperature during cooling (Fig. 1b) 

is discussed in [3]. Assume that the irreversible deformation during the cooling under fixing irreversible deformation 
at some time utt  gives by  
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This notation becomes useful in deriving of the analytical relations describing the stress-strain state in the process 
of cooling (unloading). 

We write the solutions for the stress (5) based on the irreversible deformation (11) and the boundary conditions (4) 
in form 
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The terms in equation (11) containing the linear thermal expansion  should be vanished to obtain relations for the 
residual stresses. 

4. Discussion. 

The distribution of thermal stress during the plastic flow and after full cooling are shown on Fig. 2. The vertical dashed 
lines indicate the plastic flow boundaries. We note one more feature of the irreversible deformations formation in the 
plastic flow domain. The rate of plastic deformation equal to zero during the process of reducing the temperature, 
which signifies the beginning of the unloading process under heating. This fact is neglected, since it can be concluded 
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that the rapid transient heating with subsequent unloading in the subsequent alignment of the temperature field slightly 
changes the final residual deformation on the basis of a number of previously solved problems [4, 5]. Fig. 3 shows the 
results of thermal stress calculations at constant and variable yield strength. We use the numerical solution for von 
Mises yield criterion and analytical solution for the Tresca yield criterion [3] to compare the obtained analytical results. 
Additionally, for the conditions Tresca may be valid the effect of "repeated plastic flow", when in the process of 
cooling the level of residual stress generated is large enough the irreversible deformation, in which the increment of 
plastic strain occurs with the opposite sign. The repeated plastic flow occurs immediately after unloading the material 
for a certain values of  during the heating under Ishlinsky-Ivlev yield criterion framework. For these case Ishlinsky-

Ivlev yield criterion transforms to krr 4 . The present solution of the problem shows that the yield point 

dependence on temperature can lead to the edges change in Ishlinsky-Ivlev yield criterion during unsteady heating of 
the material, even in plane stress frameworks. Furthermore, the problem could not have a solution for a specific yield 
strength dependence on temperature. This fact certainly should be considered for the correct setting and more accurate 
solutions of the thermoelastic-plastic problems.  

Fig. 1. Temperature field: a) Heating, b) Cooling. 

Fig. 2. Thermal stresses: a) Plastic flow, b) Unloading (residual stresses). 
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Fig. 3. Thermal stresses during plastic flow: a) ),( trkk , b) constk .
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