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Abstract—In the framework of the theory of large deformations, we obtain the solution of a boundary
value problem on the flow of an elastoviscoplastic material in a gap between two rigid coaxial
cylindrical surfaces under pressure drop changing with time. It is assumed that slip of the material
is possible on both surfaces. We consider reversible deformation, the development of viscoplastic
flow under the increasing and constant pressure drop, deceleration of the flow under the decreasing
pressure drop, and the unloading of the medium.
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The exact solutions to the problems of antiplane plastic flow within the framework of the Shvedov–
Bingham model have been repeatedly obtained [1–4]. Also, some fairly universal methods have been
developed for calculation of viscoplastic flows [5, 6]. The abandonment of the assumption on the non-
deformability of the medium in stagnant zones or the medium forming rigid nuclei leads to a significant
complication of the mathematical simulation of its flows. Deformations in such domains are reversible;
therefore, the formulation of the boundary-value problems must be carried out in terms of displacements.
But, in the flow domains, the problem is solved in terms of displacement velocities. The fulfilment of the
continuity conditions for velocities and stresses on the boundaries of the domains is insufficient and can
lead to erroneous solutions [7]. Therefore, it is necessary that the continuity conditions for displacements
be fulfilled, although to calculate the displacements in the flow domains is sometimes difficult [8].

Simulation of the flow process should be carried out in large deformations since at least irreversible
deformations cannot be considered small. Rather many models have been proposed of large elastoplastic
deformations beginning from the first geometrically consistent model [9]. Let us note some domestic
works [10–13]. We will use the mathematical model of [14] that is described in detail in [15]. This
model meets the classical requirements to the elastoplastic model: during the unloading process, the
irreversible deformations change in the same way as in the case of rigid body motion, the stresses in the
medium are completely determined by reversible deformations, the unloaded state does not depend on
the path of unloading in the stress space. These requirements are not mandatory, but their formulation
as assumptions greatly simplifies the model of large elastic-plastic deformations and allows us to obtain
solutions of boundary value problems related to elastoplastic and elastoviscoplastic [16–19] deformation
of materials acquiring large deformations, even including some exact solutions.

Below we construct the solution of the problem on the flow of an elastoviscoplastic medium in
a cylindrical layer under conditions of a varying pressure drop. In [18, 19] the problems were considered,
close in formulation, on the plastic flow of a medium in a cylindrical tube under the influence of varying
pressure drop and in a cylindrical layer when the inner boundary surface moves.
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1. BASIC MODEL RELATIONS

In the rectangular Cartesian system of the Euler spatial coordinates xi, the kinematics of the medium
[14] is determined by the dependences
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Here, dij are the components of the Almansi strain tensor; eij − 0.5eikekj and pij are its invertible and
noninvertible components; ui and vi are the components of displacement vectors and velocities of the

points of the medium;
D

Dt
is the used objective tensor derivative with respect to time, which is given for

an arbitrary tensor nij ; and εp
ij (source in the transport equation for the irreversible deformation tensor)

are the components of the tensor of the plastic strain rates. The presence of a nonlinear component of the
rotation tensor zij , which is given in [15], is connected with the fulfillment of the invariance requirement
for the plastic deformation tensor pij in the unloading processes.

We consider the material incompressible and take into account the condition of the density of the free
energy distribution independent of irreversible deformations. Then we obtain the analog of Murnaghan’s
formula [14]:
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where σij are the components of the Euler–Cauchy stress tensor, P and P1 are the additional hydrostatic
pressures, W = W (eij) is the elastic potential, μ, b, and χ are the constants of the material, and δij is
the Kronecker symbol.

As the plastic potential, we use Tresca’s condition

max |σi − σj| = 2k + 2η max
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n
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in which σi and εp
n are the principal values of the tensors of stresses and rates of plastic deformations,

k is the yield stress, and η is the coefficient of viscosity.

The rates of irreversible deformations are related to stresses by the associated law of plastic flow:
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