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Abstract. The present study is devoted to the problem of residual stresses calculation in AM fabricated ball during heating. Strains
of the ball are assumed to be small, which allows to use the apparatus of the theory of thermoelastoplastic akin to Prandtl and
Reuss. The problem of the evolution of the field of residual stresses in the ball at a given temperature on its external border
is solved. The heat conduction equation and the equilibrium equations may be independently integrated when the hypothesis
of the insignificance of the coupled effects of thermal and mechanical processes is adopted. The fields of residual stresses and
displacements are computed.

INTRODUCTION

The studies of the stress-strain state of multilayer (composite) structures are actual problems of modern Continuum
Mechanics and Mechanics of the Technological Processes [1, 2, 3, 4, 5, 6, 7, 8]. The influence of temperature effects
in such processes naturally allows one to accurate prescribe the formation of residual stresses and deformations sig-
nificantly imposing the restrictions on the exploitation and durability of structures. One such example is the problem
of mathematical modelling of the technological operation of hot fitting [9, 10, 11, 12].

The initial thermal expansion plays a great role in the formation of residual stresses and deformations and,
consequently, influences on the strength characteristics of the manufactured product (see for example [13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24]).

The process of adding new parts of the material can be considered as a process of discrete material growth
used in the technology of additive manufacturing. The mechanics of growing bodies [25, 26, 27] can be considered
as a theoretical basis for solving such problems. In [28, 29, 30], boundary value problems of the growth of heavy
viscoelastic bodies were solved with the gravitational forces presence. The thermal state of a growing viscoelastic
sphere was discussed in [31].

TWO-LAYERED SPHERE DEFROMATION

Throughout the paper we will use the conventional Prandtl–Reuss elastic plastic model [1] generalized on thermal
effects. Consider a spherical layer under the number x = 1 with an internal R0 and external R1 radii and being in a
free state at referential temperature T = T1. Suppose that at some time t = t1 the uniformly heated to the temperature
T = T2 second spherical layer with radii R1 and R2 is attached to the outer surface of the first layer. We assume the
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conditions of an ideal thermal contact on the layers contact surface, and assume that the cooling of the bilayer material
occurs as a result of heat flux through the free surfaces. Then it can be assumed that the temperature of the outer layer
decreases uniformly to the temperature of the continuum T1. At the same time, the temperature change of the inner
layer does not have a significant effect on the stress-strain state formation. The thermal stresses are increased in both
layers as a result of cooling caused by restrictions of free thermal compression on the inner contact surface. Let’s
introduce the following notation: m is the number of layers, x is the actual layer number (x = 1..m), then Rx−1, Rx is
the size of each layer before its adding, Tx is the initial temperature of the layer before its adding.

We consider the governing equations of the problem in a one-dimensional statement in a spherical coordinate
system. In the frameworks of the infinitesimal deformations theory the relations between the components of the
deformation tensor di j and the radial component of the displacement vector ur are furnished by

drr = err + prr = ∂ur/∂r, dϕϕ = dϑϑ = eϕϕ + pϕϕ = ur/r. (1)

The relations between the stress tensor components σi j and strain ones ei j for the isotropic material are subject
to the Duhamel–Neumann law

σrr = (λ + 2µ)err + 2λeϕϕ + q∆i,
σϕϕ = σϑϑ = 2(λ + µ)eϕϕ + λerr + q∆i.

(2)

wherein λ, µ are the Lame parameters, q = (3λ + 2µ), ∆ = α(T − T1) is the thermal expansion coefficient, α is the
linear thermal expansion coefficient.

The components of the stress tensor satisfy the equation of equilibrium

∂σrr

∂r
+

2(σrr − σϕϕ)
r

= 0. (3)

The system of equations (1–3) are closed and allows us to derived solution for stresses and displacements in an
arbitrary layer for the general case in the absence of irreversible deformations (pi j = 0)

σrr(x, r) = Amx +
Bmx

r3 , σϕϕ(x, r) = σϑϑ(x, r) = Amx −
Bmx

2r3 , ur(x, r) = −r∆x +
rAmx

(3λ + 2µ)
−

Bmx

4µr2 . (4)

Amx, Bmx are the integration constants that depend on the boundary conditions and the layers number. The bound-
ary conditions of the considered problem are read by the following equations

σrr(1,R0) = 0, σrr(m,Rm) = 0,
σrr(x,Rx) = σrr(x + 1,Rx), ur(x,Rx) = ur(x + 1,Rx). (5)

Note that the system of boundary conditions (5) is valid only for calculation of the reversible deformation process.
Since it does not take into account the deformation prehistory. Thus, in the case of thermoelastic equilibrium of a two-
layered sphere (m = 2) for the integration constants we can obtain

A21 =
4µ(3λ + 2µ)(R3

2 − R3
1)∆2

3(λ + 2µ)(R3
2 − R3

0)
, B21 = −

4µ(3λ + 2µ)R3
0(R3

2 − R3
1)∆2

3(λ + 2µ)(R3
2 − R3

0)
,

A22 =
4µ(3λ + 2µ)(R3

1 − R3
0)∆2

3(λ + 2µ)(R3
2 − R3

0)
, B22 = −

4µ(3λ + 2µ)R3
2(R3

1 − R3
0)∆2

3(λ + 2µ)(R3
2 − R3

0)
,

(6)

Hereafter the resulting equations for the integration constants are not given in view of their simple derivations
from the system of linear equations (boundary conditions) and the cumbersome resulting equations.

Calculations of thermoelastic equilibrium parameters show that the absolute maximum values of stresses occur
on the inner surfaces of both layers. The stress level is proportional to the difference ∆x − ∆x+1. Consequently, for
a certain value of ∆2, the absolute value of the shear stress |σrr − σϕϕ| determining the permissible regimes of the
reversible deformation processes can reach values at which the plastic flow of the material is possible.

Stresses inside the plastic flow domain satisfy the yield criterion

σrr(x, r) − σϕϕ(x, r) = 2sxk, (7)

wherein sx = sgn(σrr(x,Rx−1) − σϕϕ(x,Rx−1)), k is the yield stress.
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The equation of equilibrium integration (3) under the boundary condition (7) allows us to obtain equations for
stresses, displacements and irreversible deformations inside the plastic flow domain (Rx−1 < r < vx)

σrr(x, r) = F2x − 4sx ln(r),
σϕϕ(x, r) = σϑϑ(x, r) = F2x − 4sx ln(r) − 2sxk,

ur(x, r) =
G2x

r2 −
4krsx ln(r)
(3λ + 2µ)

+ r

 F2x

(3λ + 2µ)
− ∆x

,
prr(x, r) = −2pϕϕ = −2pϑϑ = −

2G2x

r3 +
2sxk(λ + 2µ)
µ(3λ + 2µ)

.
(8)

The presence of a plastic flow leads to a change in the integration constants equations (6) and the appearance of
new constants G, F. To find a new set of constants, the conditions (5) must be supplemented by the conditions for
the equality of radial stresses and displacements at the boundaries vx separating the domain of plastic flow from the
one of reversible deformation. After this, the positions of the elastoplastic boundaries can be found as the numerical
solution of the system of equations prr(x, vx) = 0. The heat transfer leads to the formation of the final residual stresses
distribution. In this case, the elastoplastic boundaries hold their positions inside the domains with accumulated plastic
deformations and the yield criterion (7) is valid. Thus, the stress state of the material corresponds to the regime of
neutral loading.

Fig. 1 shows the distribution of residual stresses in the two-layers material in the case of plastic flow in both
layers.

1 1.2 1.4 1.6 1.8 2 2.2 2.6 2.8 r/R0

-2

-1.5

-1

-0.5

0

0.5

1

σi j/k0

v1 v2

σrr
σϕϕ

FIGURE 1. Residual stresses of a two layered sphere

THREE-LAYERED SPHERE DEFROMATION

In this section consider the problem of adding a third layer x = 3 with internal and external radii R2 < r < R3 heated
to the initial temperature T3 = T2 to the formed two-layered sphere considered in previous section. Because of the
smallness of the deformations, The displacement of the outer surface of the cooled second layer can be neglected
by changing the displacements and assume the size of the composite sphere by R0 < r < R2. In order to determine
how the heat transfer and the thermal compression of the outer third layer processes affect to the change in residual
stresses in the resulting composite sphere we will assume that the material is everywhere deformed elastically with the
accumulated irreversible deformations. Calculation of the thermoelastic state of the material will allow us to determine
the stress level causing the plastic flow process.
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Denote the function of the irreversible deformation by

P(x, r) =


−

(
2G2x

r3 +
2sxk(λ + 2µ)
µ(3λ + 2µ)

)
, Rx−1 < r < vx;

0, vx < r < Rx

(9)

Then we find equations for the residual stresses and displacements in virtue of irreversible deformation (9)

σrr(x, r) =
2µ(3λ + 2µ)

(λ + 2µ)
I(x, r) + M3x +

N3x

r3 ,

σϕϕ(x, r) =
µ(3λ + 2µ)

(λ + 2µ)
(2I(x, r) + P(x, r)) + M3x +

N3x

r3 ,

ur =
2µr

(λ + 2µ)
I(x, r) − r∆i +

rM3x

(3λ + 2µ)
−

N3x

4µr2 ,

I(x, r) =

∫ r

Rx−1

P(x, ρ)
ρ

dρ.

(10)

Note the equations (10) correspond to the distributions shown on Fig. 1.
The stress state of the third layer is given by the equations (4) with integration constants A33, B33. It was found

that with thermal compression and cooling of the third layer the intensity of shearing stresses decreases at each point
of the second layer. Thus, the material stress strain state in the domain R1 < r < v2 passes from the state of neutral
loading to the unloading state. At the same time, the conditions of the continuity of the circumferential stresses are
satisfied on the inner boundary of the third layer. The material stress strain state in the first layer R0 < r < v1 changes
from the state of neutral loading to the plastic flow with a change of the position of the elastoplastic boundary. Fig. 2
illustrates the stress distributions in a three-layer thermoelastoplastic sphere.
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FIGURE 2. Residual stresses of a three-layered sphere. g1 is a new location of the elastic plastic border in the inner sphere layer

CONCLUDING RESULTS DISCUSSION

On the basis of this solution, it can be concluded that each subsequent adding layer having the same heating temper-
ature leads to the propagation of plastic flow in the inner layer. Moreover, the continuity conditions of the circumfer-
ential stresses are satisfied on each contact surface Rx(x > 0). The jumps in the circumferential stresses during the
addition of the third layer are possible in two cases:

1. for a different levels of initial heating temperatures of the second and third adding layers and consequently a
different thermal expansion rates during cooling;
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2. if the size of the inner surface of the third heated layer is equal to the size of the outer surface of the second
layer during cooling.

Both cases are equivalent to each other with the thermal deformation gradient ∆2 − ∆3 arising on the contact
surface. The accumulation of plastic deformation on the inner surface of the first layer leads to a rearrangement of the
deformation causing the decreasing of the second layer level stress and the material unloading.

When the subsequent layers are attached, further deformations are accumulated on the inner surface of the com-
posite ball, while in the interlayer zone the conditions of compatibility of deformations (continuity of stresses) are pre-
served. Therefore, part of the stackable multilayer material can be considered as solid with dimensions R1 < r < Rm.

When the subsequent layers are attached, further deformations are accumulated on the inner surface of the com-
posite ball, while in the interlayer zone the conditions of compatibility of deformations (continuity of stresses) are
preserved. Therefore, part of the stackable multilayer material can be considered as solid with sizes R1 < r < Rm.
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